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Napoleon polygons

Titu Andreescu, Vladimir Georgiev, and Oleg Mushkarov

Abstract. An n-gon is called Napoleon if the centers of the regularn- gons erected outwardly
on its sides are vertices of a regularn-gon. In this note we obtain a new geometric charac-
terization of Napoleonn- gons and give a new proof of the well-known theorem of Barlotti -
Greber ([1], [4]) that ann-gon is Napoleon if and only if it is affine - regular. Moreover, we
generalize this theorem by obtaining an analytic characterization of then-gons leading to a
regularn-gon after iterating the above constructionk times.

1. INTRODUCTION. A popular topic in plane geometry is to study configurations
obtained by constructing polygons on the sides of a given polygon. The most classical
result in this direction is the so-called Napoleon’s theorem which states that if equilat-
eral triangles are erected outwardly(inwardly) on the sides of an arbitrary triangle then
their centers are vertices of an equilateral triangle. We refer the reader to [2] for the
history of this theorem and its connection to Napoleon. There are various interesting
generalizations of Napoleon’s theorem ( see e.g. [3] and the literature cited there) of
which we mention that obtained first by Barlotti [1] in 1955 and then by Greber [4]
in 1980. It says that if regularn-gons are erected outwardly(inwardly) on the sides
of ann-gonP , then their centers are vertices of a regularn-gon if and only ifP is
affine-regular, i.e. it is the image of a regularn-gon under an affine transformation of
the plane. We call the polygons having this property Napoleon polygons.

In this paper, we obtain a new geometric characterization ofNapoleon polygons.
Namely, we proved in Theorem 1 that any such ann-gon is obtained by fixing two
consecutive vertices of a regularn-gon and translating the remaining(n− 2) vertices
by collinear vectors with lengths whose ratios we compute explicitly. As an application
we give a new proof of the theorem of Barlotti-Greber (Theorem 2). Moreover, we
examine the polygons obtained by iterating the above construction. Given ann-gonP
denote byP (1) then-gon whose vertices are the centers of the regularn-gons erected
outwardly on its sides. Then we define recursively the sequenceP (k) of n-gons by

P (0) = P, P (k+1) = (P (k))(1), k ≥ 0.

We say that a polygonP is k-step Napoleon if the polygonP (k) is regular. For ex-
ample, the Barlotti-Greber theorem says that a polygon is1-step Napoleon if and only
if it is affine-regular. In Theorem 3 we generalize this result by obtaining an analytic
characterization of thek-step Napoleon polygons for allk ≥ 1.

2. NAPOLEON POLYGONS. In what follows we denote a point on the plane and
the complex number it represents by the same symbol. Also we always assume that all
polygons under consideration are simple and non-degenerate plane polygons.

Given ann-gonP with verticesz1, z2, . . . , zn (as usual all subscripts are taken
modulon) we denote byP (1) the n-gon whose verticesz(1)1 , z

(1)
2 , . . . , z(1)

n
are the

centers of the regularn-gons erected outwardly on its sidesz1z2, z2z3, . . . , znz1, re-
spectively.

Definition. We say that a polygonP is Napoleon if the polygonP (1) is regular.
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In this section we give a new proof of the Barlotti-Greber theorem mentioned
in Introduction. To do this we first prove the following analytic characterization of
Napoleon polygons.

Theorem 1. LetP be ann-gon with verticesz1, z2, . . . , zn and letz01 , z
0
2 , . . . , z

0
n

be
the vertices of the regularn-gon erected inwardly on the sidez1z2 of P . ThenP is a
Napoleonn-gon if and only if

zk = z0
k
+ pk.u (1)

whereu is a complex number and

pk =
sin (k−2)π

n
sin (k−1)π

n

sin π

n
sin 2π

n

(2)

for all 1 ≤ k ≤ n.

Proof. Setω = ei
2π

n . Sincez(1)
k

is the center of the regularn-gon erected outwardly
on the sidezkzk+1 of P we have

zk − z
(1)
k

= ω(zk+1 − z
(1)
k

)

and we get

z
(1)
k

=
zk − ω.zk+1

1− ω
, 1 ≤ k ≤ n. (3)

On the other hand then-gonP (1) is regular if and only if

z
(1)
k+1 − z

(1)
k

= ωk−1(z
(1)
2 − z

(1)
1 ), 1 ≤ k ≤ n. (4)

Hence it follows from (3) and (4) thatP is a Napoleonn-gon if and only if its vertices
satisfy the following recursive relation

ω.zk+2 − (1 + ω)zk+1 + zk = ωk−1(ω.z3 − (1 + ω)z2 + z1), 1 ≤ k ≤ n. (5)

We now setzk = z0
k
+ uk, 1 ≤ k ≤ n and notice thatu1 = u2 = 0. Set alsou3 = u.

The polygonz00 , z
0
1 , . . . , z

0
n

is regular, thusz0
k

satisfy the relation (5) and pluggingzk
in (5) gives the following relation foruk:

ω.uk+2 − (1 + ω)uk+1 + uk = ωk.u, 1 ≤ k ≤ n. (6)

If u = 0 thenu1 = u2 = · · · = un = 0. Hence we may setuk = pk.u, wherep1 =
p2 = 0, p3 = 1 and (6) implies thatpk satisfy the recurrence relation

ω.pk+2 − (1 + ω)pk+1 + pk = ωk, 1 ≤ k ≤ n. (7)

Now settingqk = pk+1 − pk we obtain from (7) that

qk − ω.qk+1 = −ωk, 1 ≤ k ≤ n.

It follows by induction onk that

qk =
1− ω2k−2

(1− ω2)ωk−2
, 1 ≤ k ≤ n. (8)
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Now taking into account that

pk = q2 + q3 + · · ·+ qk−1, 3 ≤ k ≤ n

and using (8) we get

pk =
k−1∑

s=2

ω−s+2 − ωs

1− ω2
=

(1− ωk−2)(1− ωk−1)

ωk−3(1− ω)(1− ω2)
(9)

for all 1 ≤ k ≤ n. Finally, to obtain (2) it is enough to apply the formula

1− ωs = −2i sin
sπ

n
ω

s

2

in the above identity.

The above theorem gives a nice geometric description of the Napoleonn-gons.
Namely, it shows that each of them can be obtained by fixing twoconsecutive vertices
of a regularn-gon and translating the remainingn − 2 vertices by collinear vectors
with lengths in ratiop3 : p4 : · · · : pn, wherepk is given by (2).

Now we can prove the Barlotti-Greber theorem by using Theorem 1.

Theorem 2. (Barlotti-Greber) A polygon is Napoleon if and only if it is affine-regular.

Proof. Note first that using complex numbers every affine transformation of the (com-
plex) plane has the formw = az + bz + c, wherea, b, c are complex numbers. Hence
ann-gonP with verticesz1, z2, . . . , zn is affine-regular if and only if there are com-
plex numbersa, b, c such that

zk = aωk + bωk + c, 1 ≤ k ≤ n, (10)

whereω = ei
2π

n . One can see easily thatP is a regularn-gon if and only if there are
complex numbersa, c such that

zk = aωk + c, 1 ≤ k ≤ n. (11)

Let nowP be ann-gon with verticesz1, z2, . . . , zn and letz01 , z
0
2 , . . . , z

0
n

be the ver-
tices of the regularn-gon erected inwardly on the sidez1z2 of P . Then there are
complex numbersa, c such that

z0
k
= aωk + c, 1 ≤ k ≤ n. (12)

Hence by (10), (12) and equation (1) in Theorem 1 it follows that to prove the theorem
it is enough to show that there are complex numbersα, β, γ such that

aωk + c+ pku = αωk + βωk + γ (13)

for all 1 ≤ k ≤ n. Plugging the formula forpk given in (9) andω = 1
ω

in (13), and
then clearing the denominators we can write both sides of theresulting equality as
quadratic functions with respect toωk. Now comparing the coefficients leads to
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α = a+
u

(1− ω)(1− ω2)
, β =

ω3.u

(1− ω)(1 − ω2)
, γ = c−

ω.u

(1− ω)2
.

Henceα, β, γ are uniquely determined bya, c, u and vice versa and the theorem is
proved.

Remark 1. Theorems 1 and 2 are true also if regularn-gons are erected inwardly on
the sides of the givenn-gon.

3. A GENERALIZATION OF BARLOTTI-GREBER THEOREM. Given ann-
gonP we can iterate the construction of then-gonP (1) k times to obtain ann-gon
denoted byP (k). More precisely, this sequence of polygons can be defined recursively
as follows:

P (0) = P, P (s+1) = (P (s))(1), s ≥ 0.

Definition. A polygonP is said to bek-step Napoleon if the polygonP (k) is regular.

For instance, a polygon is0-step Napoleon iff it is regular and1-step Napoleon
if it is affine-regular. The next theorem gives an analytic characterization ofk-step
Napoleon polygons for everyk ≥ 0. Note that in its statement we assume that the
degree of0 polynomial is−1, not−∞.

Theorem 3. An n-gon with verticesz1, z2, . . . , zn is k-step Napoleon if and only if
there are complex numbersa, c and a degreek − 1 polynomialbk−1(x) with complex
coefficients such that

zm = aωm + bk−1(m)ωm + c, 1 ≤ m ≤ n. (14)

Hereb
−1 ≡ 0 andb0 ≡ const.

Proof. We proceed by induction onk. For k = 0 andk = 1 the statement follows
by equations (10) and (11) which characterize the regular and affine-regular polygons,
respectively. Suppose it is true for somek and letP be a(k + 1)-step Napoleonn-
gon. This means thatP (1) is ak-step Napoleon polygon and it follows by the inductive
assumption that

z(1)
m

= aωm + bk−1(m)ωm + c, 1 ≤ m ≤ n, (15)

wherea, c are complex numbers andbk−1(x) is a degreek − 1 polynomial with com-
plex coefficients. Similarly to equation (3) we have

z(1)
m

=
zm − ω.zm+1

1− ω
, 1 ≤ m ≤ n

and we obtain from (15) that

zm − ωzm+1 = a(1− ω)ωm + (1− ω)bk−1(m)ωm + c(1− ω), 1 ≤ m ≤ n.
(16)
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(Recall thatzn+1 = z1. ) Denote the right hand side of (16) byAm. Then it follows
by induction onm that

zm =
n∑

s=m

ωs−mAs + ωn−m+1z1.

Now plugging the expression forAs in the above identity and summing up we find

zm =
aωm(1− ω2(n−m+1))

1 + ω
+ (1− ω)ωm

n∑

s=m

bk−1(s) + c(1− ωn−m+1) + ωn−m+1z1.

Notice thatωn = 1 and
∑

n

s=m
bk−1(s) is a polynomial of degreek onm. Hence we

can writezm in the form

zm = Aωm + bk(m)ωm + c

where

A =
a

1 + ω
, bk(m) = (z1 − c−

a

1 + ω
)ω + (1− ω)

n∑

s=m

bk−1(s).

Conversely, suppose thatP is ann-gon whose vertices are given by (14). Then using
(3) it follows easily by induction ons that for all1 ≤ s ≤ k we have

z(s)
m

= a(1 + ω)sωm + dk−s−1(m)ωm + c, 1 ≤ m ≤ n,

wheredk−s−1(x) is a polynomial of degreek − s− 1. Hence

z(k)
m

= a(1 + ω)kωm + c, 1 ≤ m ≤ n

and thereforeP (k) is a regular polygon. Thus the theorem is proved.

Finally, let us note that Theorem 3 holds also true if we construct regularn-gons
inwardly on the sides of the givenn-gonP . In this case one has to switch the roles of
ω andω in the formula for the vertices ofP .
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