

Dynamising the Mathematics Classes with Art Ideas

Jenny Sendova representing the BG team

Seeing is not as simple as it looks Ad Reinhardt

Visual Modeling

Integrating the classes in mathematics, informatics, arts and ICT in the style of constructionism and inquiry based learning

In teacher education (pre-service)

In the style of Kandinski

A la Vasarely

Create a "person" by geometric figures

Pencho Balkanski

A la Pencho Balkanski

A la Pencho Balkanski

In the style of Sonia Delaunay

Robert and Maurine Rothschild Collection

Computer variations of Sonia Delaunay's models

In the style of Escher

Tessellations

Ideas in practice

DON'T PREACH FACTS, STIMULATE ACTS!

Paul Halmos

A teacher stimulating acts

In-service teacher education

Modeling the beauty around them

Wood-carved ceilings from Triavna and Plovdiv and some computer models

Explore the rotational dynamic constructions by means of the sliders so as to create models similar to the pictures of rotational objects

Creating dynamic composition tools in art and photography – a DynaMat scenario

The idea behind this chapter is:

- to motivate better the study of geometry for students with interests in art by revealing for them the strong relation between the esthetics of an artistic compositions and some geometric principles;
- To consider several methods for studying and creating compositions in art
- To create dynamic consturctions (in GeoGebra) for implementing these methods

Geometric constructions as an exploratory tool in art

Rabatment with diagonals

Rabatment

Creating a Rabatment button (in GeoGebra)

Step-by-step description of the process

Tools Window Help ☆ Create New Tool ... S Manage Tools ...

Customize Toolbar ...

Create New Tool	X
Output Objects Input Objects Name & Icon	
Select objects in construction or choose from list	
	~
Quadrilateral многоъгълник3	
Segment a,	
Segment b,	
Segment c,	X
Segment d ₁	<u> </u>
Segment <mark>g</mark> ₁	ancel
Seament h	

The rule of thirds

Rhombus

In photography

Combining the methods

The golden section in art

Dynamic mini-projects

- 1. Arrange for a picture in two ways (according to two methods for composition):
 - 6 persons at a birthday party sitting around a round table
 - a class of 24 pupils and their teacher
 - flowers and fruits
 - perfumes and an advertisement
- Explore the result with dynamic constructions and make corrections if necessary.
- 2. Create a dynamic construction in the style of the artist Max Bill

Can the equations be exciting?

Can the equations be exciting?

Example	Coefficient vectors a and b
7	a = (-0.1, -0.6, 0.5, 0.2, -0.2, -0.3, -0.7, -0.8, -0.1, -0.9)
	b = (-0.6, -0.2, 1.1, 0.6, 0.8, -0.8, -0.8, 1, 1.2, -0.8)
8	a = (-0.4, 0.6, 0, -0.5, 0.4, -1, -0.5, 0.3, -0.9, -0.7)
	b = (-0.2, -0.7, -1.1, -0.2, -0.8, -1.2, -0.1, -0.4, -0.7, -0.9)
9	a = (0, -0.6, -0.6, 0.1, -0.9, 0.3, -0.5, 1, 0.2, 0.1)
	b = (-0.2, -0.7, 0.4, 0.8, -0.4, -0.4, -0.5, -1.1, 0.9, 0.3)
10	a = (0.2, 0.9, -0.7, -0.2, 1, -0.2, -0.8, -0.4, -1.1, 0.3)
	b = (-0.6, 0.1, 1.2, 0.3, 0.9, -0.2, 1, -1, 1.2, 0.8)

$$\begin{aligned} x_{n+1} &= a_1 + a_2 x_n + a_3 x_n^2 + a_4 x_n^3 + a_5 x_n^2 y_n + a_6 x_n y_n + a_7 x_n y_n^2 + a_8 y_n + a_9 y_n^2 + a_{10} y_n^3 \\ y_{n+1} &= b_1 + b_2 x_n + b_3 x_n^2 + b_4 x_n^3 + b_5 x_n^2 y_n + b_6 x_n y_n + b_7 x_n y_n^2 + b_8 y_n + b_9 y_n^2 + b_{10} y_n^3 \\ n &= 0, 1, 2, \dots \end{aligned}$$

$$\begin{array}{rcl} x_{n+1} &=& y_n - sign\left(x_n\right) \sqrt{|bx_n - c|} \\ y_{n+1} &=& a - x_n, \quad n = 0, 1, 2, \ldots; \quad x_0 = y_0 = 0.1 \end{array}$$

Judge for yourselves

This project has been funded with support from the European Commission in its Lifelong Learning Programme (510028-LLP-1-2010-1-IT-COMENIUS-CMP). This publication reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.