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1 Napoleon’s theorem: a little bit history
Napoleon was known to be an amateur mathematician. Among his friends was the Italian
mathematician Lorenzo Mascheroni who introduced the limitation of using only a compass (no
straight edge) in geometric constructions. One of Napoleon’s problems in this direction is to
find the center of a given circle using only a compass. The problem is not trivial, but since this
is not the main purpose of our discussions, we shall mention only that it is interesting because
problems of that kind are real life problems from the Renaissance period (1300-1600). The
Renaissance inventions and discoveries of this period include for example:

• Mechanical Clock;

• Artillery, launching tubes introduced by an engineer William Congreve ;

• Printing Press, the machine was invented in 1440 by Johann Gutenberg of Germany;

• Compass, first used by a Chinese voyager Zheng He (1371-1435);

• Microscope, Hans Janssen developed the first compound microscope in 1509;

• Wallpaper, the first paper mill was set up in England in the year, 1496;

• Submarine, a design of submarine was created by Leonardo Da Vinci. However, Cornelius
van Drebbel invented the submarine in the year 1624;

• The Match, invention made in 1680 by Robert Boyle;

• Eyeglasses, Salvino D’Amate an Italian inventor developed the earliest form of eyeglasses
in 1284.

The importance of these inventions and the fact that they changed significantly the real life
explain why some important math problems from that period have been connected with some
new practical issues.

Another example of this period: P. Fermat (1601-1665) challenged Evangelista Torricelli (1608-
1647), the inventor of barometer with the following question

• Find a point in the plane such that the sum of their distances from the vertices of a triangle
is a minimum.
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Torricelli presented several solutions to this problem. In one of them he observed that the
circumcircles of the equilateral triangles constructed externally on the sides of a given triangle
meet in a point (called now Fermat’s point).

Remarkable math statements have been attributed to Napoleon Bonaparte (1769-1821) although
his relation to the theorems and their proofs is questioned in most of the sources available
to our knowledge. Nevertheless, the mathematics flourished in post-revolutionary France and
mathematicians were held in great esteem in the new Empire. Laplace was a Minister of the
Interior under Napoleon.

The following statement (known as Napoleon’s theorem) is closely connected with the Fermat
problem (see [14]), presented above.

Theorem 1. (Napoleon’s Theorem) On each side of a triangle an exterior equilateral triangle
is constructed. Show that the centers of the three thus obtained equilateral triangles are vertices
of an equilateral triangle.

Figure 1: Napoleon’s theorem

It’s indeed quite surprising that the shape of the resulting triangle does not depend on the shape
of the original one. However it depends on the shape of the constructed triangles: it’s equilateral
whenever the latter triangles are equilateral. The corresponding Geogebra file can be found on
the following link Napoleon problem.

This is our starting point. Our main purpose is to develop concrete didactic units (supported
and interacting with Geogebra outputs) that can be used:
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• in courses for preparation of future or in service teachers

• to implement some of materials in classroom practice.

Our interest to study Napoleon’s theorem is partially motivated by the fact that it is not very
popular among Italian Math professors. Although, it is difficult to explain this phenomenon, one
can easily predict ( and this was indeed verified in practice) that Math students and consequently
future math teachers have no any idea about this beautiful math statement.

2 GeoGebra simulations of Napoleon’s theorem
We use Geogebra since it has a friendly and easy way of preparing geometric applications. This
allows us to move the points A,B,C freely as vertices of an arbitrary triangle.

The Geogebra application can be activated on the following link Napoleon problem with triangles.
It is prepared in collaboration with the student Sara Leal Venegas during the work of the Math
lab ”Problem Posing” in the spring of 2011 in Pisa University.

As a first example of questions that one may ask using the dynamic application is the following
one:

• Is the ratio of the areas of △ JKL and △ ABC on Figure 1 constant?

This question can be easily answered by means of the Geogebra application. Moving the point
A in such a way that in the limiting case A,B,C are collinear, one can keep the area of △ JKL,
while the area of △ ABC tends to 0. So the conclusion is that the answer is negative.

Another question related to above one is the following:

• Can we find the area of △ JKL or equivalently can we find its side?

This example shows how one can ”jump” from Geogebra application to an abstract problem
whose solution needs pure math reasoning and computations without using IT tools.

Turning back to Napoleon’s theorem we had experience during the work of the Problem Posing
Lab with the following questions:

• What happens if one replaces the equilateral triangles by squares?

• Is there a generalization of Napoleon’s theorem replacing the initial triangle by a quadri-
lateral ?

The answer to the first question was found very rapidly by using Geogebra application, (see
Figure 2) that can be activated on the following link Napoleon problem with squares.

One can see that if the point B approaches A, then △ KLJ ( see Figure 3 ) becomes very close
to a right triangle, that is it is not equilateral.

Using the same Geogebra simulation one can see that the centroids of the triangles ABC and
JKL coincide. Indeed, using Exercise 5 we see that the complex numbers corresponding to the
vertices of these triangles satisfy the relations (see Figure 3 )
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Figure 2: Geogebra replaces triangles with squares
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Now it is easy to check that
ℓ+ k + j = a+ b+ c,

so the centroids of △ ABC and △ LKJ coincide.

Since each of the triangles BCL, CAK and ABJ is isosceles right triangle, it is natural to ask
the following question:

• Are there three distinct non - collinear points A,B,C such that △ LKG is an isosceles
right triangle ?

The answer (suggested by the previous simulations with Geogebra) is the following

Lemma 1. If A,B,C are three distinct non - collinear points, then △ LKJ is not an isosceles
right triangle.



Figure 3: Geogebra counterexample for generalization of Napoleon’s theorem

Proof. If we suppose that △ JLK is an isosceles right triangle, then we have the relation
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Substituting (1) and (2) in this relation, we obtain

i

2
(a− b) = 0

and this of course leads to a contradiction.

Another question that may be posed is the following:

• Are there three distinct non - collinear points A,B,C, such that LKJ is an equilateral
triangle ?

One can use Lemma 2 to solve the following:

Exercise 1. If A,B,C are three distinct non - collinear points, then △ LKJ is equilateral iff
△ ABC is equilateral .

A more interesting question is to find all cases, when △ LJK is a right triangle. We can state
the following ”conjecture” that has been tested with Geogebra simulations.



Figure 4: Right triangles with counterclockwise orientation of △ LKJ

Proposition 1. If A,B,C are three distinct non - collinear points, then ∢LJK = 900 iff A and
B lie on the lines LJ and KJ, respectively.

Proof. Take an arbitrary △ ABC with clockwise orientation, for example (see Figure 4). We
suppose that the centroids L,K, J of the squares are such that △ BCL, △ CAK and △ ABJ
are clockwise oriented. Then we can apply Exercise 7 to deduce the identities
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The condition ∢LJK = 900 means that (see Exercise 6)
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where λ > 0 in case of counterclockwise orientation of △ LKJ (Figure 4) and λ < 0 in case of
clockwise orientation of △ LKJ (Figure 5) . Then one can combine all relations to obtain

a− ℓ = λ(j − ℓ),



so A lies on the line JL. In a similar way B lies on the line JK.

We leave as an exercise to the reader to prove the converse statement.

Figure 5: Right triangles with clockwise orientation of △ LKJ

3 Proof of Napoleon’s theorem by using complex numbers
Now we are ready to complete the proof of Napoleon’s theorem. Taking a look at Figure 1 and
applying Lemma 3 we see that

ℓ = w1b+ w2c, k = w1c+ w2a, j = w1a+ w2b, (3)

where

w1 =
z1 + 1

3
, w2 =

z2 + 1

3
.

This simple relation guarantees that the centroids of △ ANC and △ LKJ coincide, since

ℓ+ j + k = a+ b+ c

in view of (10) and (3). Without loss of generality we may assume that

a+ b+ c = 0, (4)

so
ℓ+ j + k = 0.



We have to verify that
ℓ = z1j + z2k. (5)

On one side Lemma 2 will guarantee (taking into account the orientation) that △ LKJ is
equilateral as stated in the Theorem. On the other hand, the substitution of ℓ, k, j from (3) in
(5) leads to the relation

−(z1w1 + z2w2)a+ (w1 − z1w2)b+ (w2 − z2w1)c = 0. (6)

Comparing this relation with (4), we see that the identities

−(z1w1 + z2w2) = (w1 − z1w2) = (w2 − z2w1)

will guarantee that (6) is satisfied. Having in mind that
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3
, w2 =

z2 + 1

3
, z1 + z2 = 1,

we see that the following conditions have to be verified

−z21 − z22 − 1 = 1− z1z2 = 1− z1z2. (7)

Now we can use (9) and see that

−z2
1
− z2

2
− 1 = z2 + z1 − 1 = 0, 1− z1z2 = 1− 1 = 0

so (7) is trivially satisfied and Napoleon’s theorem is proved.

4 Some generalizations of Napoleon’s theorem
A well - known generalization of Napoleon’s theorem is the following one (see [12]):

For an arbitrary △ ABC, three exterior points A1, B1, C1 are constructed such that

△ ABC1 ∼△ BCA1 ∼ CAB1.

Then the centroids of these triangles are vertices of a triangle similar to them.

Actually it’s not even necessary to consider the centroids. For arbitrary △ ABC take three
external points A1, B1, C1 such that

∢AC1B + ∢BA1C + ∢CB1A = 3600.

Then △ A1B1C1 is similar to a triangle with angles

∢C1AB + ∢B1AC,∢C1BA+ ∢A1BC,∢A1CB + ∢B1CA.

One can see the references ([12], pp. 178 – 181) and [5] for the proof of this interesting fact.

A direct generalization of Napoleon’s theorem was obtained first by Barlotti [1] in 1955 and
then by Greber [6] in 1980. It says that if regular n-gons are erected outwardly(inwardly) on
the sides of an n-gon P , then their centers are vertices of a regular n-gon if and only if P is
affine-regular, i.e. it is the image of a regular n-gon under an affine transformation of the plane.

We propose to the reader to prove the particular case of the Theorem of Barlotti - Greber when
n = 4.



Figure 6: Geogebra application: Quadrilaterals and Napoleon’s theorem

Exercise 2. On the sides of a quadrilateral external squares are constructed. Prove that:

(a) The centers of the squares are vertices of a quadrilateral with perpendicular diagonals of
equal length.

(b) The quadrilateral in (a) is a square if and only if the initial quadrilateral is a parallelogram.

Hint. Let a, b, c, d be the complex numbers corresponding to the vertices of the original quadri-
lateral. Express the complex numbers of the centers M,N,P,Q of the squares in terms of
a, b, c, d, and then show that n − q = i(m − p). For part (b), use the fact that MP ⊥ NQ,
showing that the quadrilateral MNPQ is a square if and only if MN ‖ PQ. Then express this
condition in terms of a, b, c, d.

Motivated by the Exercise 1 we propose to the reader to prove the following generalization of
Napoleon’s theorem:

Exercise 3. On the sides of a non-equilateral triangle three regular n−gons are constructed
externally to the triangle. Prove that their centers are vertices of an equilateral triangle iff
n = 3.



Hint. Use the fact (prove it) that the complex numbers a, b, c are vertices of an equilateral
triangle iff

a2 + b2 + c2 = ab+ bc+ ca.

5 Appendix: Complex numbers and geometry
One of the main difficulties for first year students at University is of course the math course
(courses) and especially the lack of experience to work with trigonometric functions and complex
numbers. The use of the complex numbers is not used effectively in the preparation of future
teachers. Typical opinion is that this is an algebraic algorithm that is not very clear, but has
to work by applying formal calculations only.

The initial observation is that any point (say A) in the plane can be identified with a complex
number (denoted by a). If a ∈ C is multiplied by λ > 0 then we can interpret the map

a ∈ C ⇒ λa ∈ C

as homothety or dilation. The multiplication by eiϕ = cosϕ+ i sinϕ for a real ϕ is a well defined
map

a ∈ C ⇒ eiϕa ∈ C

which is a rotation with center 0 and angle ϕ.

For any △ABC there is a relation of the form

a = z1b+ z2c, z1 + z2 = 1, (8)

where z1, z2 ∈ C.

It is clear that the coefficients z1, z2 are unique provided B 6= C. Indeed, if

z1b+ z2c = z̃1b+ z̃2c

and
z1 + z2 = z̃1 + z̃2 = 1

then we have
(z1 − z̃1)b = (z̃2 − z2)c.

Since b 6= c and z1 − z̃1 = z̃2 − z2, we get

z1 = z̃1, z2 = z̃2.

We have the following

Lemma 2. △ABC is equilateral if and only if (8) is fulfilled with

z1 =
1

2
± i

√
3

2
, z2 = z1.

Proof. We may assume that the complex number

m =
b+ c

2



corresponding to the midpoint of the segment BC is 0. Then

a = ±i tan(π/3)b = ±i
√
3b,

since A can be obtained by a rotation by π/2 (i.e. by multiplication by ±i) and homothety (i.e.
multiplication ) by tan(π/3) =

√
3.

Remark 1. The numbers z1, z2 are the complex roots of the equation z3 = 1 and moreover

z1 + z2 = 1, z1z2 = 1, z2
1
= −z2, z

2

2
= −z1. (9)

Remark 2. The relation (8) is useful and can be easily adapted to more general situations and
possible modifications of Napoleon’s classical theorem.

Exercise 4. Find a necessary and sufficient condition (expressed in terms of z1, z2 in (8)) so
that ABC is a right triangle with ∢A = 900.

Hint. The triangle ABC is right if and only if

c− a = (b− a)iλ

for some real λ 6= 0. Using this relation and (8) one finds

(z1 − iλz1 + iλ)(c − b) = 0

which implies
z1 − iλz1 + iλ = 0.

Answer.

z1 =
λ2 − iλ

1 + λ2
, z2 = 1− z1 =

1 + iλ

1 + λ2

for some real number λ 6= 0.

Exercise 5. Find a necessary and sufficient condition (expressed in terms of z1, z2 in (8)) so
that ABC is an isosceles right triangle with ∠A = 90o.

Hint. Take λ = ±1 in Exercise 4 to obtain

z1 =
1∓ i

2
, z2 = z1.

The following Lemma has been used in the proof of Napoleon’s theorem.

Lemma 3. If △ABC is equilateral and (8) is fulfilled with

z1 =
1

2
± i

√
3

2
, z2 = z1,

then its centroid is given by
a+ b+ c

3
= w1b+w2c,

where

w1 =
(z1 + 1)

3
, w2 +

(z2 + 1)

3
.



Note that (9), implies that
w1 + w2 = 1. (10)

We end this section giving a more precise description of the choice of the points L,K, J in
Figure 1. The orientation of a circle in the plane is clockwise or counterclockwise orientation.
Similarly, any three points or any triangle has clockwise or counterclockwise orientation. The
triangle ABC on Figure 1 has a clockwise orientation. It is important that △ ABJ, △ BCL and
△ CAK have the same orientation.

We have the following modification of Lemma 2, where the orientation is taken into account.

Lemma 4. △ABC is equilateral and counterclockwise oriented iff (8) is fulfilled with

z1 =
1

2
− i

√
3

2
, z2 = z1.

Similarly, Exercises 4 and 5 become

Exercise 6. A necessary and sufficient condition so that ABC is a right triangle with ∠A = 900

and counterclockwise oriented is
a = z1b+ z2c,

where

z1 =
λ2 − iλ

1 + λ2
, z2 = 1− z1 =

1 + iλ

1 + λ2

for some real number λ > 0.

Remark 3. The condition

a =
λ2 − iλ

1 + λ2
b+

1 + iλ

1 + λ2
c

can be rewritten in the form

a =
1 + iµ

1 + µ2
b+

µ2 − iµ

1 + µ2
c

after the substitution

µ = − 1

λ
.

Exercise 7. A necessary and sufficient condition so that △ABC is isosceles right triangle with
∠A = 900 and counterclockwise oriented is

a =
1− i

2
b+

1 + i

2
c.
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