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1 Short introduction
Dynamical billiard is a dynamical system corresponding to the inertial motion of a point mass
within a region that has a piecewise smooth boundary with elastic reflections. Billiards appear
as natural models in many problems of optics, acoustics and classical mechanics. The most
prominent model of statistical mechanics, the Boltzmann gas of elastically colliding hard balls
in a box can be easily reduced to a billiard.

The billiard dynamical system is generated by the free motion of a mass-point (called a billiard
ball) subject to the elastic reflection in the boundary. This means that the point moves along a
geodesic line with a constant (say, unit) speed until it hits the boundary. At a smooth boundary
point the billiard ball reflects so that the tangential component of its velocity remains the same,
while the normal component changes its sign. In dimension two this collision is described by a
well known law of geometrical optics: the angle of incidence equals the angle of reflection. Thus
the theory of billiards and the theory of geometrical optics have many features in common.

One of the interesting billiard tables having elliptic shape is given on Figure 6

Figure 1: Elliptic table

The simplest billiard table is a circular one. Let κ = κ(O, r) is a circle with center O and radius
r > 0 (see Figure 2). If S0 is a point on the circle κ in Figure 2 and it is starting point of the ray
having S1 as next intersection point, then at this point S1 we have a reflection with the angle
of incidence α1 equals the angle of reflection β2. After the reflection the ray continues and we
have the next intersection point S2 of the ray, where again a reflection occurs and we have

α2 = β2.

Each trajectory is defined by the initial points S0 and the points

S1, S2, · · ·

of the reflection at the boundary (in this case the circle κ).

The first observation is that at the points of reflections S1, S2, · · · we have

α1 = β1 = α2 = β2 = · · · ,
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1 Introduction 
In optics when it comes down to show the path of rays of light through glass, lenses or systems of 
lenses, many physics teachers groan – the experiments are quite complex, and you need a lot of 
equipment. It is difficult enough to show a ray of light in air – you need smoke, dust or any other way 
of making light visible. To show the path of light in materials, you need special equipment – smoke 
glass lenses etc. Now that’s not always available, and adjustments to the system can usually only be 
done by removing one piece and putting another piece in. To see what happens if you make a lens 
thicker, you have to take out the current lens and put in the new one. Students can then observe the 
situation before the change and after the change – but it is not exactly a gradual change that lets them 
observe how the path of light actually changes. We want to demonstrate how you can show the path of 
light through a lens with the help of dynamic geometry software (DGS). 

This material can be useful for science teachers, who can use it to model experiments with lenses, 
reflection and refraction – not instead of the actual experiment (if one sees experiments only in 
simulation, the pedagogic value is not quite the same), but complementing it. It can as well be useful 
for mathematics teachers. Well, now where is the mathematics? There is a lot of it in there! If a ray of 
light hits the glass surface of an optical lens, a part of it gets reflected back in a certain angle, and 
another part penetrates the glass and continues there, in another angle. The same happens when the 
light reaches the other surface of the lens – again mathematics is required to calculate the angle in 
which the light is reflected and refracted. For ideal lenses, there is an easy equation calculating these 
effects – but this is just a model, and it does work well only with thin lenses and with light falling in 
near the centre of the lens. With thicker lenses and light being more off-centre, the calculations 
become more complex, and from the equations alone it would be difficult to see what happens. With 
DGS it is possible to simulate the properties of a lens without actually having to use a lens, laser light, 
etc. But even for the DGS, we need mathematics to create the simulation in the first place. 

2 Easy beginnings – light hits a plane surface 
2.1 Reflection 
When a ray of light hits a plane glass surface, a part of it is reflected. The law of reflection says that 
the angle of incidence (between the ray of light and the normal) is equal to the angle of reflection: 

 
Fig.1 Reflection of light at a plane surface. 



Figure 2: Circular billiard table

i.e. each trajectory makes a constant angle with the boundary (in this case is the circle κ).

On the other hand, the same trajectory remains tangent to a concentric circle. To clarify this
fact we use the corresponding GeoGebra application.

In this application a new possibility of combining Java and Geogebra is used (see the Appendix).

One can see that each trajectory remains tangent to a concentric circle.

If S0 is a point on the ellipse in Figure 5 and it is starting point of the ray having S1 as next
intersection point, then at this point S1 we have a reflection with the angle of incidence α equals
the angle of reflection β. After the reflection the ray continues and we have the next intersection
point S2 of the ray, where again a reflection occurs.

Before we proceed any further we introduce a new concept.

Definition 1. A caustic of a plane billiard is a curve such that if a trajectory is tangent to it,
then it again becomes tangent to it after every reflection.

Thus the billiard in a circle has a family of caustics, consisting of concentric circles.

The next case to consider is that of conics. Recall that an ellipse consists of points whose sum of
distances to two given points is fixed; these two points are called the foci of an ellipse. An ellipse
can be constructed using a string, whose ends are fixed at the foci the method carpenters and
gardeners actually use). A hyperbola is defined similarly with the sum of distances replaced by
the absolute value of their difference; and a parabola is the set of points at equal distances from
a given point (the focus) and a given line (the directrice). Ellipses, hyperbolas and parabolas
all have second order equations in Cartesian coordinates.

2 Some simple properties
The first result is the following optical property of ellipses.
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Created with GeoGebra

_

Figure 3: Geogebra application for Circle

Figure 4: Geogebra application for Circle

Lemma 1. A ray of light, emanating from one focus, comes to another focus after a reflection
in the ellipse. Said otherwise, the segments, that join a point of an ellipse with its foci, make
equal angles with the ellipse.

Proof. Consider an extremal problem: given a line ℓ and two points F1 and F2 on one side of
it, find a point X on ℓ such that the distance |F1X|+ |XF2| is minimal. Solution: reflect F1 in
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Fig.1 Reflection of light at a plane surface. 



Figure 5: Billiard table

the line and join with F2 by a straight segment.

Figure 6: Basic property of ellipse

The point of intersection with ℓ is X. It follows that the angles made by F1X and F2X with
ℓ are equal. On the other hand, X can be obtained as follows. Consider the family of ellipses
with the fixed foci F1 and F2. Then X is the point where an ellipse from this family touches ℓ
for the first time. Hence X is the point of tangency of an ellipse with the foci F1 and F2 and
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the line ℓ.

Likewise one proves the optical properties of a hyperbola and a parabola. These properties are
extensively used in construction of various optical instruments.

Exercise 1. If one puts a source of light in the focus of a parabolic mirror, then the reflected
rays form a parallel beam (the property used in headlights’ design).

Ellipses and hyperbolas with the same foci are called confocal. In the appropriate Cartesian
coordinates (x; y) they are given by the equation:

x2

a2 + λ
+

y2

b2 + λ
= 1, (1)

with 0 < a < b. Here λ is the variable parameter; for −b2 < λ < −a2 the curve is a hyperbola,
and for −a2 < λ it is an ellipse.

Theorem 1. An elliptic billiard table has a family of caustics, that consists of the confocal
ellipses and hyperbolas. More precisely, if a segment of a billiard trajectory does not intersect
the segment, joining foci F1 and F2, then all the segments of this trajectory do not intersect
F1F2 and are all tangent to the same ellipse with foci F1 and F2; if a segment of a trajectory
intersects F1F2, then all the segments of this trajectory intersect F1F2 and are all tangent to the
same hyperbola with foci F1 and F2.

Proof. Let A0A1 and A1A2 be consecutive segments of a trajectory. Assume that A0A1 does not
intersect the segment F1F2 (the other case is dealt with similarly). It follows from the optical
property that the angles ∠A0A1F1 and ∠A2A1F2 are equal.

Reflect F1 in A0A1 to F ′

1
, and F2 in A1A2 to F ′

2
, and set: G = F ′

1
F2∩A0A1; H = F ′

2
F1 ∩A1A2.

Consider the ellipse with foci F1 and F2, that is tangent to A0A1. Since the angles ∠F2GA1 and
∠F1GA0 are equal, this ellipse touches A0A1 at the point G. Likewise an ellipse with foci F1

and F2 touches A1A2 at the point H. One wants to show that these two ellipses coincide, or,
equivalently, that F1B + BF2 = F1C + CF2, which boils down to F ′

1
F2 = F1F ′

2
. To this end

one observes that the triangles △ F ′

1
A1F2 and △ F1A1F

′

2
are congruent:

F ′

1A1 = F1A1; F2A1 = F ′

2A1

by symmetry, and the angles ∠F ′

1
A1F2 and ∠F1A1F

′

2
are equal. Hence

F ′

1F2 = F1F
′

2,

and the result follows.

The following results have been obtained by using GeoGebra application. We have hyperbolic
caustic on Figure 8 and elliptic ones on Figure 9.

3 Simplest periodic orbits in ellipse - triangles
As a first simulation one can use the Geogebra application to find triangle periodic orbit inside
billiard table defined by the equation

e :
x2

a2
+

y2

b2
= 1. (2)
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Fig.1 Reflection of light at a plane surface. 



Figure 7: Caustics

Figure 8: Hyperbolic Caustics

As a simplest initial point we choose the vertex of the triangle △ A0A1A2 so that A0 is on the
y− axis and A0(0, b). Then it is natural to expect that if a periodic triangle exists, then (by
symmetry with respect to y−axis) it has two equal sides (A0A1 = A0A2), see Figure 10.

However it is not clear how to find the point A1 for example, since then A2 is symmetric to A1

with respect to the y− axis.

Recalling the assertion of Theorem 1, one can see that if △ A0A1A2 is periodic, then its caustic
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Fig.1 Reflection of light at a plane surface. 



Figure 9: Elliptic Caustics

Figure 10: The problem to find periodic triangle from A0.

is a confocal ellipse, say

e1 :
x2

a2
1

+
y2

b2
1

= 1. (3)

The equation (2) shows now that the condition that e and e1 are confocal, i.e. have the same
foci F1 and F2 can be expressed by

a2 − b2 = a21 − b21. (4)

We shall suppose that e1 is inside e so we have a > b > 0, a1 > b1 > 0, a > a1, b > b1. In this
way we can reformulate our question:

• Given point A0(0, b) find an ellipse e1 of type (3) inside the ellipse e so that the two
tangents from A0 to e1 generate △ A0A1A2 inscribed in e and circumscribed around e1
(see Figure 11).

Even now the solution is not obvious and one should be very careful to avoid heavy and useless
calculations that have no clear idea as a basis. So what to do? One can look in Internet and
see that most of the documents found their are not very useful for High School teachers and
students. Let us underline our main purpose: to use some concrete ”TOOLS” as: algebraic
manipulations, use of trigonometric functions, Geogebra applications and to try to pose and
find solution to some interesting problems connected with the billiards on ellipse table.
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Fig.1 Reflection of light at a plane surface. 



Figure 11: Caustic e1 of the periodic triangle

So we try to generate several ”simpler” questions and then we shall try to connect them and
to clarify our strategy to approach the main problem of this section: to construct at least one
periodic triangle explicitly in a given ellipse (2).

One possible list of questions is the following:

• Given an ellipse e1 : x2/a2
1
+ y2/b2

1
= 1 and a line y = kx + b through the point A0(0, b),

find a necessary and sufficient condition (on k, b, a1, b1) so that the line is tangent to e1;

• Given an ellipse e1 : x2/a2
1
+ y2/b2

1
= 1 and a line y − y0 = k(x − x0) through any point

A0(x0, y0), find a necessary and sufficient condition (on k, x0, y0, a, b) so that the line is
tangent to e1;

• Given an ellipse e1 : x2/a2
1
+ y2/b2

1
= 1 and the point A0(0, b) find the tangent lines from

A0 to e1 and find also the points A1, A2 of the intersection of these tangent lines with
the ellipse e : x2/a2 + y2/b2 = 1 (we need formula expressing the coordinates of A1, A2 in
terms of a, b, a1, b1 );

• Given an ellipse e1 : x
2/a2

1
+y2/b2

1
= 1 and the points A1, A2 described in the previous step

find a necessary and sufficient condition (on a, b, a1, b1) so that the line A1A2 is tangent
to e1;

• Using the relation of the previous step as well the fact that e, e1 have the same foci, i.e.
a2 − b2 = a2

1
− b2

1
express a1, b1 in terms of a, b.

Each of these steps is not very difficult and we give the main points in the solution leaving some
of the repeated details to the reader. The results are ordered in few Lemmas presented in the
Appendix.

4 Possible further steps to find more periodic triangles
One can use a trivial symmetry and to see the taking A′

0
(0,−b) symmetric to A0 with respect

to the x− axis we have another periodic triangle symmetric to the original one △ A0A1A2 from
Lemma 6. The next step is to chose different starting point for the periodic trajectory and
repeat the previous program.
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This material can be useful for science teachers, who can use it to model experiments with lenses, 
reflection and refraction – not instead of the actual experiment (if one sees experiments only in 
simulation, the pedagogic value is not quite the same), but complementing it. It can as well be useful 
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another part penetrates the glass and continues there, in another angle. The same happens when the 
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become more complex, and from the equations alone it would be difficult to see what happens. With 
DGS it is possible to simulate the properties of a lens without actually having to use a lens, laser light, 
etc. But even for the DGS, we need mathematics to create the simulation in the first place. 

2 Easy beginnings – light hits a plane surface 
2.1 Reflection 
When a ray of light hits a plane glass surface, a part of it is reflected. The law of reflection says that 
the angle of incidence (between the ray of light and the normal) is equal to the angle of reflection: 

 
Fig.1 Reflection of light at a plane surface. 



• Given an ellipse e1 : x
2/a2

1
+ y2/b2

1
= 1 and the point A0(a, 0) denote by t1, t2 the tangent

lines from A0 to e1 and by A1, A2 the points of the intersection of these tangent lines with
the ellipse e : x2/a2 + y2/b2 = 1, such that A1(x1, y1), x1 < 0, A2(x2, y2), x2 > 0. Try to
find the coordinates of A1, A2;

• Given an ellipse e : x2/a2 + y2/b2 = 1 and the point A0(a, 0) try to find an ellipse
e1 : x2/a2

1
+ y2/b2

1
= 1 and periodic triangle △ A0A1A2 so that e1 is the caustic of

the periodic triangle. Try to express a1, b1 in terms of a, b.

Figure 12: Another initial point A0

One can see that the expressions for a1, b1 are the same as the expressions from Lemma 6.

Another extremely interesting Geogebra application is the activation of animation button on
the point A0.

Figure 13: Surprise when A0 is moving on e: tangent lines remain tangent to the caustic e1.

This simulation is very important since leads us to new open questions. We can make the
following

Conjecture 1. If A0 is ANY point on the ellipse e, the small ellipse e1 is defined according to
Lemma 6 and the two tangent lines to e1 from A0 intersect the ellipse e in points A1A2, then
A1A2 is also tangent to e1.
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This phenomena is closely connected with the Poncelet Porisms (see [3], [6]). A solution of this
problem can be found in [5].

Another application that is crucial for the further study of the billiards on the ellipse is the
activation of some measurement instruments of Geogebra and to evaluate how vary the following
quantities, when A0 moves on the ”orbit” of e:

• perimeter of the periodic triangle;

• area of the periodic triangle;

• angles of the periodic triangle.

After making this experiment one can discover (unfortunately only numerically!) the next
amazing property.

Exercise 2. If A0 is ANY point on the ellipse e, then there exists a unique periodic triangle
△ A0A1A2 having constant perimeter, i.e. the perimeter is independent of position of the point
A0 on the ellipse e!!!
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to verify partially the conjecture.

• take A0(0, b) and compute the perimeter P1 of the corresponding periodic triangle;

• take A0(a, 0) and compute the perimeter P3 of the corresponding periodic triangle;

• compare P1 and P2.

One can verify that (see [4])

P1 = P2 =
4a2b(a+ a1)

√

a2 − a2
1

b2a2
1
+ a2(a2 − a2

1
)

.

5 Appendix I: Three technical lemmas
Lemma 2. Given an ellipse e1 : x

2/a2
1
+ y2/b2

1
= 1 one can express the necessary and sufficient

condition such that the line y = kx+ b through the point A0(0, b) is tangent to e1 as follows

k2 =
b2 − b2

1

a2
1

.

Proof. Substituting y by kx+ b in (3) gives

x2

a2
1

+
k2x2 + 2kbx+ b2

b2
1

= 1. (5)

The equation has only one real root so we need

b2k2

b4
1

−
(

1

a2
1

+
k2

b2
1

)(

b2

b2
1

− 1

)

= 0
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and this identity is equivalent to

k2 =
b2 − b2

1

a2
1

.

This completes the proof of the Lemma.

Lemma 3. Given an ellipse e1 : x
2/a2

1
+ y2/b2

1
= 1 one can express the necessary and sufficient

condition such that the line y − y0 = k(x − x0) through the point A0(x0, y0) is tangent to e1 as
follows

(y0 − kx0)
2 = b21 + k2a21.

Lemma 4. Given an ellipse e1 : x2/a2
1
+ y2/b2

1
= 1 and the point A0(0, b) denote by t1, t2 the

tangent lines from A0 to e1 and by A1, A2 the points of the intersection of these tangent lines
with the ellipse e : x2/a2 + y2/b2 = 1, such that A1(x1, y1), x1 < 0, A2(x2, y2), x2 > 0. Then we
have

x1 = − 2a2a1b
√

b2 − b2
1

a2
1
b2 + a2(b2 − b2

1
)
= −x2,

y1 = −M = y2, M =
a2b(b2 − b2

1
)

a2
1
b2 + a2(b2 − b2

1
)
.

Proof. Substituting y by kx+ b in (2), we find the equation

x2

a2
+

k2x2 + 2kbx+ b2

b2
= 1. (6)

One of the roots is obviously 0 and the other root is

x1 = − 2ka2b2

b(b2 + k2a2)
= − 2ka2b

(b2 + k2a2)
.

We can use the expression for k

k = ±
√

b2 − b2
1

a1

and taking into account the fact that x1 < 0 obtain

x1 = − 2a2a1b
√

b2 − b2
1

a2
1
b2 + a2(b2 − b2

1
)
.

Using the relation
y = kx+ b

we obtain the expression for y1

y1 = − a2b(b2 − b2
1
)

a2
1
b2 + a2(b2 − b2

1
)
.

This completes the proof.

From the relation M = b1 and the fact that e and e1 are confocal can be used to prove the
following.

   

This project has been funded with support from the European Commission in its Lifelong Learning Programme 
(510028-LLP-1-2010-1-IT-COMENIUS-CMP). This publication reflects the views only of the authors, and the 
Commission cannot be held responsible for any use which may be made of the information contained therein. 
 

Modelling optical lenses with Dynamic Geometry Software 
Andreas Ulovec 

1 Introduction 
In optics when it comes down to show the path of rays of light through glass, lenses or systems of 
lenses, many physics teachers groan – the experiments are quite complex, and you need a lot of 
equipment. It is difficult enough to show a ray of light in air – you need smoke, dust or any other way 
of making light visible. To show the path of light in materials, you need special equipment – smoke 
glass lenses etc. Now that’s not always available, and adjustments to the system can usually only be 
done by removing one piece and putting another piece in. To see what happens if you make a lens 
thicker, you have to take out the current lens and put in the new one. Students can then observe the 
situation before the change and after the change – but it is not exactly a gradual change that lets them 
observe how the path of light actually changes. We want to demonstrate how you can show the path of 
light through a lens with the help of dynamic geometry software (DGS). 

This material can be useful for science teachers, who can use it to model experiments with lenses, 
reflection and refraction – not instead of the actual experiment (if one sees experiments only in 
simulation, the pedagogic value is not quite the same), but complementing it. It can as well be useful 
for mathematics teachers. Well, now where is the mathematics? There is a lot of it in there! If a ray of 
light hits the glass surface of an optical lens, a part of it gets reflected back in a certain angle, and 
another part penetrates the glass and continues there, in another angle. The same happens when the 
light reaches the other surface of the lens – again mathematics is required to calculate the angle in 
which the light is reflected and refracted. For ideal lenses, there is an easy equation calculating these 
effects – but this is just a model, and it does work well only with thin lenses and with light falling in 
near the centre of the lens. With thicker lenses and light being more off-centre, the calculations 
become more complex, and from the equations alone it would be difficult to see what happens. With 
DGS it is possible to simulate the properties of a lens without actually having to use a lens, laser light, 
etc. But even for the DGS, we need mathematics to create the simulation in the first place. 

2 Easy beginnings – light hits a plane surface 
2.1 Reflection 
When a ray of light hits a plane glass surface, a part of it is reflected. The law of reflection says that 
the angle of incidence (between the ray of light and the normal) is equal to the angle of reflection: 

 
Fig.1 Reflection of light at a plane surface. 



Lemma 5. Given an ellipse e1 : x
2/a2

1
+ y2/b2

1
= 1 and the point A0(0, b) let A1(x1, y1), x1 < 0,

A2(x2, y2), x2 > 0 are the points determined in Lemma 5. Then A1A2 is tangent to e1 if and
only if

a1 =
a(
√
a4 − a2b2 + b4 − b2)

a2 − b2
,

b1 =
b(a2 −

√
a4 − a2b2 + b4)

a2 − b2
.

To avoid accumulation of too much technical proofs of lemmas we quote [4] for the proof of this
Lemma.

Practically, Lemma 5 answers the question to find the caustic of the periodic triangles in a
given ellipse e. Since it seems to be difficult to find this simple answer in the literature or in
Internet we made this effort to give the answer with completely elementary tools (algebraic
manipulations only). One can compare this answer with the classical results due to Cayley
in [1], [2], where elliptic integrals are used. The result is useful and can be used in some of
algorithms in GeoGebra (or some other IT tools) applications connected with billiard tables.
In this direction we can mention the following difficulty met when one tries to implement Java
scripts in Geogebra and simulate a non periodic trajectory with N ≫ 1 reflecting points. It
turns out that the construction of bisectrix as Geogebra tool combined with Java script causes
some limitation on N , N ≤ 100.

We close the Appendix with the following variant of Lemma 5.

Lemma 6. Given an ellipse e : x2/a2 + y2/b2 = 1 and the point A0(0, b) one can find a unique
ellipse e1 : x

2/a2
1
+ y2/b2

1
= 1 and a unique periodic triangle △ A0A1A2 so that e1 is the caustic

of the periodic triangle. Moreover, we have

a1 = a

√
s4 − s2 + 1− s2

1− s2
, b1 = b

1−
√
s4 − s2 + 1

1− s2
,

where

s =
b

a
∈ (0, 1).

6 Appendix 2: Java applet
GeoGebra applets use Java technology to combine an interactive geometry environment with
the ability to directly enter equations and coordinates making it very useful in math education
and math explorations. The basic idea of GeoGebras interface is to provide two presentations
of each mathematical object in its algebra and graphics windows. If you change an object in
one of these windows, its presentation in the other one will be immediately updated. Computer
algebra systems (such as Mathematica, Maple, and so on, e.g.) and dynamic geometry software
(such as Geometers Sketchpad, Cabri Geometry, and so on, e.g.) are powerful technological
tools for teaching mathematics. Numerous research results suggest that these software packages
can be used to encourage discovery, experimentation and visualization in traditional teaching of
mathematics. However, researches suggest that, for the majority of teachers, the main problem
is how to provide the technology necessary for the successful integration of technology into
teaching.

GeoGebra has been rapidly gaining popularity among teachers and researchers around the world,
because it is easy-to-use dynamic mathematics software that combines many aspects of differ-
ent mathematical packages. In addition, because of its open-source nature, an extensive user
community has developed around it.
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Fig.1 Reflection of light at a plane surface. 



GeoGebra has some possibilities for animation. Including more modules for animating in Ge-
oGebra should become an important technical element for future versions. Future extensions of
the software GeoGebra will surely include more symbolic features of computer algebra systems
which will further increase possible complex applications in the mathematical analysis, and 3D
extensions.

A problem that we met is connected with the use of Java applets to produce high number of
reflcting points in the billiard problem.

We use the following script associated to the slider in the program that has the following form

function stopAll(){

ggbApplet.evalCommand("StartAnimation[false]");

ggbApplet.setAnimating("slider",false);

ggbApplet.setValue("slider",100);}

var i= new Number(ggbApplet.getValue("slider"));

var lim = new Number(ggbApplet.getValue("n"));

if(i==0){

ggbApplet.evalCommand("a_{0}=

Vettore[S_{"+i+"},S_{"+(i+1)+"}]");

ggbApplet.setLineStyle("a_{0}",4);

ggbApplet.setColor("a_{0}",255,0,0);}

else if(i>=lim){

stopAll();}

else if(ggbApplet.exists("S_{"+(i)+"}")){

if(ggbApplet.evalCommand("bis"+(i)+"=

Bisettrice[F_1,S_{"+(i)+"},F_2]")){

ggbApplet.setVisible("bis"+(i),false);

if(ggbApplet.evalCommand("B"+(i)+"=

Intersezione[c, bis"+(i)+",2]")){

ggbApplet.setVisible("B"+(i),false);

if(ggbApplet.evalCommand("alpha"+(i)+"=

Angolo[S_{"+(i-1)+"},S_{"+(i)+"},B"+(i)+"]"))

{ggbApplet.setVisible("alpha"+(i),false);

if(ggbApplet.evalCommand("R"+(i)+"=

Ruota[S_{"+(i-1)+"},2alpha"+(i)+",S_{"+(i)+"}]"))

{ggbApplet.setVisible("R"+(i),false);

if(ggbApplet.evalCommand("aa"+(i)+"=

Semiretta[S_{"+(i)+"},R"+(i)+"]")){

ggbApplet.setVisible("aa"+(i),false);

if(ggbApplet.evalCommand("S_{"+(i+1)+"}=

Intersezione[c,aa"+(i)+",2]")){

ggbApplet.setPointSize("S_{"+(i+1)+"}",1);

ggbApplet.setLabelVisible("S_{"+(i+1)+"}",false)

if(ggbApplet.evalCommand("a_{"+(i)+"}=

Vettore[S_{"+i+"},S_{"+(i+1)+"}]")){

ggbApplet.setLineStyle("a_{"+(i)+"}",4);

ggbApplet.setColor("a_{"+(i)+"}",255,0,0);

}}}}}}}

else {stopAll();}}
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Modelling optical lenses with Dynamic Geometry Software 
Andreas Ulovec 

1 Introduction 
In optics when it comes down to show the path of rays of light through glass, lenses or systems of 
lenses, many physics teachers groan – the experiments are quite complex, and you need a lot of 
equipment. It is difficult enough to show a ray of light in air – you need smoke, dust or any other way 
of making light visible. To show the path of light in materials, you need special equipment – smoke 
glass lenses etc. Now that’s not always available, and adjustments to the system can usually only be 
done by removing one piece and putting another piece in. To see what happens if you make a lens 
thicker, you have to take out the current lens and put in the new one. Students can then observe the 
situation before the change and after the change – but it is not exactly a gradual change that lets them 
observe how the path of light actually changes. We want to demonstrate how you can show the path of 
light through a lens with the help of dynamic geometry software (DGS). 

This material can be useful for science teachers, who can use it to model experiments with lenses, 
reflection and refraction – not instead of the actual experiment (if one sees experiments only in 
simulation, the pedagogic value is not quite the same), but complementing it. It can as well be useful 
for mathematics teachers. Well, now where is the mathematics? There is a lot of it in there! If a ray of 
light hits the glass surface of an optical lens, a part of it gets reflected back in a certain angle, and 
another part penetrates the glass and continues there, in another angle. The same happens when the 
light reaches the other surface of the lens – again mathematics is required to calculate the angle in 
which the light is reflected and refracted. For ideal lenses, there is an easy equation calculating these 
effects – but this is just a model, and it does work well only with thin lenses and with light falling in 
near the centre of the lens. With thicker lenses and light being more off-centre, the calculations 
become more complex, and from the equations alone it would be difficult to see what happens. With 
DGS it is possible to simulate the properties of a lens without actually having to use a lens, laser light, 
etc. But even for the DGS, we need mathematics to create the simulation in the first place. 

2 Easy beginnings – light hits a plane surface 
2.1 Reflection 
When a ray of light hits a plane glass surface, a part of it is reflected. The law of reflection says that 
the angle of incidence (between the ray of light and the normal) is equal to the angle of reflection: 

 
Fig.1 Reflection of light at a plane surface. 
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