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1 Small historical introduction
One of the most important and beautiful theorems in projective geometry is that of Poncelet,
concerning closed polygons which are inscribed in one conic and circumscribed about another
(below we give the precise statement as well proof for the case of triangles). The theorem has
deep interaction with other math fields. The aim of this section is to clarify one aspect of these
these relations: the connection between Poncelet’s theorem and billiards in an ellipse. At first
sight these topics seem unrelated, belonging to two distinct mathematical fields: geometry and
dynamical systems. But there is a hidden thread tying these topics together: the existence
of an underlying structure (we name it the Poncelet correspondence which turns out to be an
elliptic curve. As is well known, elliptic curves can be endowed with a group structure, and the
exploitation of this structure sheds much light on the aforementioned topics.

However, to read most of the books and available references some prerequisites (usually covered
in undergraduate and first year graduate mathematics courses) are needed: complex analysis,
linear algebra, and some point set topology.

In this sense the argument can not be adapted easily to some extracurricula activities in High
Schools.

For this we are trying to find approach that needs only tools from the standard High School
Programs.

This is not an easy problem. The classical A. Cayley (see [2], [3]) approach uses elliptic integrals,
some other sources (see [5], [6], [8] and the references cited there) apply arguments for projective
geometry and group theory.

The statement of the Poncelet’s problem needs only to know the definition and the equation of
the ellipse.

Theorem 1. (Poncelet’s Porism) Given one ellipse inside another, if there exists one circum-
inscribed (simultaneously inscribed in the outer and circumscribed on the inner) n -gon, then
any point on the boundary of the outer ellipse is the vertex of some circuminscribed n-gon.

There are several proofs of this remarkable theorem, most of which are not elementary. Poncelet’s
theorem dates to the nineteenth century and has attracted the attention of many mathematicians
of that period (a detailed historical account is given in [1]). The main reason for this interest
seems to stem from the fact that several proofs of this theorem require the use of complex and
homogeneous coordinates, notions which were beginning to emerge at the time (1813) when
Poncelet discovered his theorem. Poncelet discovered the theorem while in captivity as war
prisoner in the Russian city of Saratov. After his return to France, a proof appears in his
book [7], published in 1822. The proof, which is synthetic and somewhat elaborate, reduces the
theorem to two (not’ necessarily concentric) circles. A discussion of the ideas in Poncelet’s proof
is given in [1], pp. 298-311.

Our purpose is to find elementary proof in one nontrivial situation: the case n = 3 and the
situation, when we have two ellipses

e :
x2

a2
+
y2

b2
= 1 (1)
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1 Introduction 
In optics when it comes down to show the path of rays of light through glass, lenses or systems of 
lenses, many physics teachers groan – the experiments are quite complex, and you need a lot of 
equipment. It is difficult enough to show a ray of light in air – you need smoke, dust or any other way 
of making light visible. To show the path of light in materials, you need special equipment – smoke 
glass lenses etc. Now that’s not always available, and adjustments to the system can usually only be 
done by removing one piece and putting another piece in. To see what happens if you make a lens 
thicker, you have to take out the current lens and put in the new one. Students can then observe the 
situation before the change and after the change – but it is not exactly a gradual change that lets them 
observe how the path of light actually changes. We want to demonstrate how you can show the path of 
light through a lens with the help of dynamic geometry software (DGS). 

This material can be useful for science teachers, who can use it to model experiments with lenses, 
reflection and refraction – not instead of the actual experiment (if one sees experiments only in 
simulation, the pedagogic value is not quite the same), but complementing it. It can as well be useful 
for mathematics teachers. Well, now where is the mathematics? There is a lot of it in there! If a ray of 
light hits the glass surface of an optical lens, a part of it gets reflected back in a certain angle, and 
another part penetrates the glass and continues there, in another angle. The same happens when the 
light reaches the other surface of the lens – again mathematics is required to calculate the angle in 
which the light is reflected and refracted. For ideal lenses, there is an easy equation calculating these 
effects – but this is just a model, and it does work well only with thin lenses and with light falling in 
near the centre of the lens. With thicker lenses and light being more off-centre, the calculations 
become more complex, and from the equations alone it would be difficult to see what happens. With 
DGS it is possible to simulate the properties of a lens without actually having to use a lens, laser light, 
etc. But even for the DGS, we need mathematics to create the simulation in the first place. 

2 Easy beginnings – light hits a plane surface 
2.1 Reflection 
When a ray of light hits a plane glass surface, a part of it is reflected. The law of reflection says that 
the angle of incidence (between the ray of light and the normal) is equal to the angle of reflection: 

 
Fig.1 Reflection of light at a plane surface. 



Figure 1: Poncelet’s theorem for the case of circle and ellipse.

and

e1 :
x2

a2
1

+
y2

b2
1

= 1, (2)

such that e1 is inside e.

We shall prove in this case the Poncelet’ theorem as well as the following more precise result.

Theorem 2. (see Figure 1 ) Suppose the ellipse (2) is inside the ellipse (1), i.e.

a > b > 0, a1 > b1 > 0,

a > a1, b > b1.

Then the following conditions are equivalent:

i) there exists a triangle △ A0B0C0 inscribed in e and circumscribed on e1,

ii) we have the relation
a1
a

+
b1
b

= 1.

iii) for any point A on the ellipse e one can find a unique triangle △ ABC inscribed in e and
circumscribed on e1.

2 Reduction to the case of circle and ellipse and preliminary facts
Consider two ellipses

e :
x2

a2
+
y2

b2
= 1 (3)

and

e1 :
x2

a2
1

+
y2

b2
1

= 1, (4)

such that e1 is inside e. This condition can be expressed as

a > b > 0, a1 > b1 > 0,
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Fig.1 Reflection of light at a plane surface. 



a > a1, b > b1.

One can use a simple change of coordinates in the plane

X =
x

a
, Y =

y

b
, (5)

so that the ellipse e in the new coordinates X,Y has equation

X2 + Y 2 = 1. (6)

so it is the circle k(O, 1) with center at the origin O of the new coordinate system and has radius
1.

The second ellipse e1 becomes

X2

A2

1

+
Y 2

B2

1

= 1, A1 =
a1
a
,B1 =

b1
b

(7)

and it is clear that this change of coordinates preserves the notions of intersection, line is
transformed in line, circle in circle, ellipse in ellipse (or circle as a partial case) and if the line
and ellipse are tangent they remain tangent after the change of the coordinates (see Figure 2).

Exercise 1. Prove the fact that if line and ellipse are tangent they remain tangent after the
change of the coordinates (5).

Figure 2: Ellipse is transformed in circle.

For this from now on we shall work with circle k(O, 1) with center at the origin O and radius 1

x2 + y2 = 1. (8)

and ellipse e1
x2

a2
1

+
y2

b2
1

= 1, 1 > a1 ≥ b1 (9)

inside k(O, 1) as it is shown on Figure 1.

We prepare again a list of questions preparing the solution of the problem (or proof of the
Poncelet’s theorem):

• Given an ellipse e1 : x
2/a2

1
+y2/b2

1
= 1 and the point A0(x0, y0) on k(O, 1) find the tangent

lines from A0 to e1 and find also the points A1, A2 of the intersection of these tangent lines
with the circle x2+ y2 = 1 (we need formula expressing the coordinates of A1, A2 in terms
of x0, y0 and the angular coefficients k1, k2 of the lines A0A1 and A0A2 respectively;
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• Using the parametrization

xj = cosϕj , yj = sinϕj , j = 0, 1, 2 (10)

find a relation between ϕj and θ1,2 = arctank1,2.

• Given an ellipse e1 : x2/a2
1
+ y2/b2

1
= 1, the point A0(x0, y0) on k(O, 1), the tangent lines

from A0 to e1 intersecting k(O, 1) into the points A1, A2 and using the parametrization
(10) express the necessary and sufficient condition that the line A0A1 is tangent to the
ellipse e1 in terms of ϕ0, ϕ1 and θ1 = arctank1.

• Given an ellipse e1 : x2/a2
1
+ y2/b2

1
= 1, the point A0(x0, y0) on k(O, 1), the tangent lines

from A0 to e1 intersecting k(O, 1) into the points A1, A2 and using the parametrization
(10) express the necessary and sufficient condition that the line A0A2 is tangent to the
ellipse e1 in terms of ϕ0, ϕ2 and θ2 = arctank2.

• Using simple trigonometric transformations show that the following two conditions a)
the line A0A1 is tangent to the ellipse e1 (condition is expressed in terms of ϕ0, ϕ1 and
θ1 = arctank1) b) the line A0A2 is tangent to the ellipse e1 (condition is expressed in
terms of ϕ0, ϕ2 and θ2 = arctank2) imply a) the line A1A2 is tangent to the ellipse e1
(condition is expressed in terms of ϕ1, ϕ2 and θ1,2 = arctank1,2)

Step by step we give answers presenting some Lemmas that can be verified without difficulty.

Figure 3: When A0A1 is tangent to e1?.

Lemma 1. Given an ellipse e1 : x
2/a2

1
+ y2/b2

1
= 1 one can express the necessary and sufficient

condition such that the line y − y0 = k(x − x0) through the point A0(x0, y0) is tangent to e1 as
follows

(y0 − kx0)
2 = b21 + k2a21.

Lemma 2. Given an ellipse e1 : x2/a2
1
+ y2/b2

1
= 1 and point A0(x0, y0) on the unit circle and

denote by
t : y − y0 = k(x− x0)
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any line through A0 and by A1(x1, y1) the point of the second intersection of this line with the
unit circle k(O, 1) : x2 + y2 = 1, such we have

x1 =
k2 − 1

k2 + 1
x0 −

2k

k2 + 1
y0,

y1 = −
2k

k2 + 1
x0 −

k2 − 1

k2 + 1
y0.

Proof. The intersection points are given by the equations

x2 + (y0 + k(x− x0))
2 = 1.

This equation has two roots x0 and x1 so

x0 + x1 = −
2k(y0 − kx0)

1 + k2
.

From this relation we get the expression for x1. Similarly we proceed for y1.

Lemma 3. Given an ellipse e1 : x2/a2
1
+ y2/b2

1
= 1 and a point A0(cosϕ0, sinϕ0) on the unit

circle denote by
t : y − y0 = k(x− x0)

any line from A0 and let A1 the second point of intersection of this lines with the circle k(O, 1) :
x2 + y2 = 1, such that A1(cosϕ, sinϕ). Then the relations of Lemma 2 take the form we have

θ =
ϕ+ ϕ0 − π

2
+mπ,m ∈ Z,

where
θ = arctan k.

Proof. We have the relations

k2 − 1

k2 + 1
= − cos(2θ),

2k

k2 + 1
= sin(2θ).

Making the substitution
x1 = cosϕ, y1 = sinϕ

we find
cosϕ = − cos(2θ) cosϕ0 − sin(2θ) sinϕ0 =

= cos(2θ + π) cosϕ0 + sin(2θ + π) sinϕ0 = cos(2θ + π − ϕ0),

sinϕ = − sin(2θ) cosϕ0 + cos(2θ) sinϕ0 =

= sin(2θ + π) cosϕ0 − cos(2θ + π) sinϕ0 = sin(2θ + π − ϕ0),

and these relations lead simply to the needed relation

2θ + π − ϕ0 = ϕ+ 2mπ,m ∈ Z.

This completes the proof.
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Lemma 4. Given an ellipse e1 : x
2/a2

1
+ y2/b2

1
= 1 and a point A0(cosϕ0, sinϕ0) denote by

t : y − y0 = k(x− x0)

a line through A0 and by A1 the point of the intersection of this line with the circle e : x2+y2 = 1,
such that A1(cosϕ, sinϕ). Then t is tangent to e1 if and only if

we have

cos2
(

ϕ− ϕ0

2

)

= b2
1
sin2

(

ϕ+ ϕ0

2

)

+ a2
1
cos2

(

ϕ+ ϕ0

2

)

= (a2
1
− b2

1
) cos2

(

ϕ+ ϕ0

2

)

+ b2
1
.

Proof. From Lemma 1 we see that we need to transform (y0 − kx0)
2 into a function of ϕ and

ϕ0. Indeed, we have

y0 − kx0 =
cos θ sinϕ0 − sin θ cosϕ0

cos θ
=

sin(ϕ0 − θ)

cos θ
. (11)

Using now the relation

θ =
ϕ+ ϕ0 − π

2
+mπ,m ∈ Z,

from Lemma 1, we see the the numerator in (11) is

sin(ϕ0 − θ) = sin

(

ϕ0 − ϕ+ π

2
−mπ

)

= (−1)m cos

(

ϕ0 − ϕ

2

)

while the denominator becomes

cos θ = cos

(

ϕ+ ϕ0 − π

2
+mπ

)

= (−1)m sin

(

ϕ+ ϕ0

2

)

so we find

sin2
(

ϕ+ ϕ0

2

)

(y0 − kx0)
2 = cos2

(

ϕ− ϕ0

2

)

.

Applying Lemma 1 combined with the above relations, we complete the proof of the Lemma.

Remark 1. We can rewrite the relations of Lemma 4 in different ways using the formula

cos2 α =
1 + cos(2α)

2
,

also as
cos(ϕ− ϕ0) = c2 cos(ϕ+ ϕ0) +D, (12)

or
(1− c2) cosϕ cosϕ0 + (1 + c2) sinϕ sinϕ0 = D, (13)

where
c2 = a2

1
− b2

1
,D = a2

1
+ b2

1
− 1. (14)
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Figure 4: The meaning of the assumption △ A0B0C0 is circumscribed on e1?

3 Proof of Poncelet theorem using trigonometric functions
We take a point A0(cosϕ0 , sinϕ0) on the unit circle and find of two tangent lines t1, t2 through
A0 to the ellipse

e1 =
x2

a2
1

+
y2

b2
1

= 1.

Then we find the intersection points of t1, t2 with the unit circle (see Figure 4) and denote the
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(this is due to Lemma 4). Similarly, the fact that A0C0 and B0C0 are tangent to e1, and Lemma
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We can unify all these relations into one
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1 Introduction 
In optics when it comes down to show the path of rays of light through glass, lenses or systems of 
lenses, many physics teachers groan – the experiments are quite complex, and you need a lot of 
equipment. It is difficult enough to show a ray of light in air – you need smoke, dust or any other way 
of making light visible. To show the path of light in materials, you need special equipment – smoke 
glass lenses etc. Now that’s not always available, and adjustments to the system can usually only be 
done by removing one piece and putting another piece in. To see what happens if you make a lens 
thicker, you have to take out the current lens and put in the new one. Students can then observe the 
situation before the change and after the change – but it is not exactly a gradual change that lets them 
observe how the path of light actually changes. We want to demonstrate how you can show the path of 
light through a lens with the help of dynamic geometry software (DGS). 

This material can be useful for science teachers, who can use it to model experiments with lenses, 
reflection and refraction – not instead of the actual experiment (if one sees experiments only in 
simulation, the pedagogic value is not quite the same), but complementing it. It can as well be useful 
for mathematics teachers. Well, now where is the mathematics? There is a lot of it in there! If a ray of 
light hits the glass surface of an optical lens, a part of it gets reflected back in a certain angle, and 
another part penetrates the glass and continues there, in another angle. The same happens when the 
light reaches the other surface of the lens – again mathematics is required to calculate the angle in 
which the light is reflected and refracted. For ideal lenses, there is an easy equation calculating these 
effects – but this is just a model, and it does work well only with thin lenses and with light falling in 
near the centre of the lens. With thicker lenses and light being more off-centre, the calculations 
become more complex, and from the equations alone it would be difficult to see what happens. With 
DGS it is possible to simulate the properties of a lens without actually having to use a lens, laser light, 
etc. But even for the DGS, we need mathematics to create the simulation in the first place. 

2 Easy beginnings – light hits a plane surface 
2.1 Reflection 
When a ray of light hits a plane glass surface, a part of it is reflected. The law of reflection says that 
the angle of incidence (between the ray of light and the normal) is equal to the angle of reflection: 

 
Fig.1 Reflection of light at a plane surface. 



What we know from the assumptions the Poncelet theorem and what we have to prove?

Take any point A(cosψ0 , sinψ0) on the unit circle and find of two tangent lines t1, t2 through
A0 to the ellipse

e1 :
x2

a2
1

+
y2

b2
1

= 1.

Then we find the intersection points of t1, t2 with the unit circle (see Figure 5) and denote the
two intersection points (different from A) by

B(cosψ1 , sinψ1), C(cosψ2 , sinψ2).

Figure 5: Two sides tangent ⇒ the third side is also tangent.

Since AB is tangent to e1 we know that:
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(this is due to Lemma 4). Similarly, the fact that A0C0 and B0C0 are tangent to e1, and Lemma
4 imply
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So we summarize all assumptions of Poncelet’s theorem and can say that (18), (19) and (20) are
satisfied.

What we have to prove?

Having in ming again Lemma 4 we see that our purpose is to show that
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This relation can be rewritten as

(1− c2) cosψ2 cosψ1 = (1 + c2) sinψ2 sinψ1 +D, (22)

where
c2 = a2

1
− b2

1
,D = a2

1
+ b2

1
− 1. (23)

according to Remark 1.

Now we are in position to apply the trigonometric lemma from the appendix and conclude that
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=
4c2D2

(1− c2)2(1 + c2)2
cos2

(

ψ2 + ψ1

2

)

+
D2

(1 + c2)2
. (24)

Comparing this relation with (21) we see that the following conditions

4D2 = (1− c2)2(1 + c2)2, D2 = b21(1 + c2)2 (25)

are required. This relations and (23) lead to the following sufficient condition

a1 + b1 = 1 (26)

that implies △ ABC is circumscribed on e1. The condition (23) is also necessary for the fulfillment
of the property

• there exists a triangle △ A0B0C0 circumscribed on e1.

If there exists at least one △ A0B0C0 circumscribed on e1, then (26) and hence △ ABC is
circumscribed on e1.

This completes the proof of the Theorem.

4 Appendix: Trigonometric Lemma
Lemma 5. Suppose
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and
{

(1− c2) cosψ1 cosψ0 + (1 + c2) sinψ1 sinψ0 = D ;
(1− c2) cosψ2 cosψ0 + (1 + c2) sinψ2 sinψ0 = D .

(27)

Then
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and moreover
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Proof. Take the difference between the relations in (27). We get
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This proves (28). The other relation can be obtained following the plan

• first equation in (27)× sinψ2− second equation in (27)× sinψ1;

• first equation in (27)× cosψ2− second equation in (27)× cosψ1.

In this way we get
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Taking the sum of squares of these identities we obtain
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and this equation yields (29).

This completes the proof of the Lemma.
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