

Dyna MAT

Setning Poncelets og lotubundnir þríhyrningar í sporbaugi **Modelling optical lenses with Dynamic Geometry Software**

Vladimir Georgiev, Veneta Nedyalkova Íslensk þýðing, Ragnar Stefánsson \mathbf{I} onto show the path of rays of \mathbf{I} rays of \mathbf{I} rays of light through glass, lenses or systems of \mathbf{I}

1 Sögulegur inngangur sames groan et experiments are quite complex, and you need a lot of experiments are quite complex, and you need a lot of experiments are quite complex, and you need a lot of experiments are α

Ein af mikilvægustu og fallegustu setningunum í varpfræði er setning Poncelets, sem fjallar um lokaða marghyrninga sem eru innritaðir í eitt keilusnið og umritaðir um annað keilusnið (að neðan gefum við nákvæmu yrðinguna og sönnum við hana í tilfelli þríhyrninga). Setningin hefur djúp tengsl við önnur svið stærðfræðinnar. Markmið þessa kaflahluta er að skýra nánar út tengslin milli setningu Poncelets og biljarðs í sporbaugi. Við fyrstu sýn virðast þessi viðfangsefni vera ótengd þar sem þau koma úr tveimur óháðum stærðfræðisviðum: rúmfræði og hreyfikerfi. En beinga þar sem þau nema ur veimur endeum startenæsis votum. Tunntaser og meginterni. En
falinn þráður tengir þessi viðfangsefni saman: tilvist undirliggjandi fyrirbæris (sem við nefnum Poncelet samsvörunina) sem reynist vera sporbaugsferill. Það er vel þekkt að hægt er að skilgreina grúpumynstur á sporbaugsferlum og hagnýting þess varpar miklu ljósi á fyrrnefnd viðfangsefni. equipment. It is difficult enough to show a ray of light in air – you need smoke, dust or any other way simulation, the pedagogic value is not quite the same), but *complementing* it. It can as well be useful

Til að lesa flestar bækur tengdar þessu viðfangefni þarf undirstöðu í tvinnfallagreiningu, línulegri algebru og grannfræði og því er ekki einfalt að búa til verkefni sem henta nemendum á framhaldsskólastigi. The glass and continues the glass and continues the same happens when the same happens when

Við reynum því að finna nálgun sem krefst einungis þeirra verkfæra sem finnast í venjulegri framhaldsskólanámsskrá. Þetta er ekki auðleyst vandamál. Hin klassíska A. Cayley nálgun (sjá $[2], [3]$ $[2], [3]$ $[2], [3]$) notar sporbaugsheildi, aðrar heimildir (sjá [\[5\]](#page-9-2), [\[6\]](#page-9-3), [\[8\]](#page-9-4) og heimildirnar sem er þar vísað í) beita rökum úr varprúmfræði og grúpufræði. light reaches the other surface of the lens – again mathematics is required to calculate the angle in við reynum því að finna nalgun sem krefst einungis þeirra verkfæra sem finnast í venjule

Fyrir framsetningu á verkefni Poncelets þarf einungis að þekkja skilgreiningu og jöfnu sporbaugs. DGS it is possible to simulate the properties of a lens without actually having to use a lens, laser light, eyrir framsetningu a verkemi Poncelets pari einungis ao pekkja skilgreiningu og jo

Setning 1. (Setning Poncelets) Gerum ráð fyrir að gefnir séu tveir sporbaugar þannig að annar \vec{a} inni í hinum. Ef til er n-hyrningur sem er innritaður í öðrum sporbaugnum og umritaður um hinn sporbauginn þá er sérhver punktur á jaðri ytri sporbaugsins hornpunktur í umrituðum am num sporoaagum pa er se.
n-hyrningi innra sporbaugsins.

Til eru nokkrar sannanir á þessari merkilegu setningu, flestar þeirra eru ekki einfaldar. Rekja má setningu Poncelets til nítjándu aldar og veittu margir stærðfræðingar þess tíma henni athygli (ítarleg sögulýsing er gefin í [\[1\]](#page-9-5)). Aðalástæðan fyrir þessu er sú staðreynd að margar sannanir setningarinnar krefjast notkunar tvinntölu- og einsleitra hnita, hugtaka sem voru að koma fram á þeim tíma (1813) þegar Poncelet uppgötvaði setninguna. Það gerði hann meðan hann var í haldi sem stríðsfangi í Rússnesku borginni Saratov. Eftir að hann snéri aftur heim til Frakklands birti hann sönnunina í bók sinni [\[7\]](#page-9-6), sem gefin var út árið 1822. Sönnunin, sem var fremur margbrotin, einfaldar setninguna í tvo (ekki endilega sammiðja) hringi. Umræða um hugmyndirnar í sönnun Poncelets er gefin í [\[1\]](#page-9-5), bls. 298 - 311. When a ray of light hits a plane glass surface, a part of it is reflected. The *law of reflection* says that t'il eru nokkrar sannanir á þessari merkilegu setningu, flestar þeirra eru ekki einfaldar

Tilgangur okkar er að finna einfalda sönnun á tilfelli sem er ekki augljóst: tilfellið $n = 3$ og þar sem við höfum tvo sporbauga

$$
e: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \tag{1}
$$

og

$$
e_1: \frac{x^2}{a_1^2} + \frac{y^2}{b_1^2} = 1,\tag{2}
$$

 $\frac{1}{2}$ bannig að e_1 sé innan e.

Við munum sanna þetta tilfelli setningar Poncelets og auk þess eftirfarandi sértækari niðurstöðu.

Mynd 1: Setning Poncelet i tilfelli hrings og sporbaugs for mathematics teachers. We have in the mathematics? There is a lot of it in the mathematics? If a ray of it is a ray of it in the mathematics? There is a ray of it is a ray of it in the mathematics? If a ray of it is a

Setning 2. (sjá mynd [1](#page-1-0)) G.r.f. að sporbaugurinn (2) sé innan sporbaugsins (1) , β .e.

$$
a > b > 0, a_1 > b_1 > 0,
$$

$$
a > a_1, b > b_1.
$$

 $\Delta \tilde{q}$ eru eftirfarandi skilyrði jafngild: become more complex, and from the equations alone it would be difficult to see what happens. With

i) til er þríhyrningur $\Delta A_0 B_0 C_0$ innritaður í e og umritaður um e_1 , ii) tölurnar a, b, a_1 og b_1 uppfylla

$$
\frac{a_1}{a}+\frac{b_1}{b}=1.
$$

iii) fyrir hvaða punkt A sem er á sporbaugnum e getum við fundið einkvæmt ákvarðaðan þrí-
I $hyrning \triangle ABC$ innritaðan í e og umritaðan um e_1 .

2 Einskorðun við hring og sporbaug

Skoðum tvo sporbauga

$$
e: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1
$$
\n(3)

og

$$
e_1: \frac{x^2}{a_1^2} + \frac{y^2}{b_1^2} = 1,\tag{4}
$$

þ.a. e¹ er innan e. Þessu skilyrði má lýsa sem

 $a > b > 0, a_1 > b_1 > 0,$ $a > a_1, b > b_1.$

Með einföldum hnitaskiptum í planinu,

$$
X = \frac{x}{a}, \quad Y = \frac{y}{b},\tag{5}
$$

Dyna MAT

hefur sporbaugurinn e í nýju hnitunum jöfnuna **Modelling optical lenses with Dynamic Geometry Software** Andreas Ulovec

$$
X^2 + Y^2 = 1\tag{6}
$$

þ.a. hann er hringurinn $k(O, 1)$ með miðju í upphafspunkti nýja hnitakerfisins O og radíus 1.

Hinn sporbaugurinn e_1 verður l_{rel} , many physics teachers group q and q and q need a lot of offs are quite complex, and q

$$
\frac{X^2}{A_1^2} + \frac{Y^2}{B_1^2} = 1, \quad A_1 = \frac{a_1}{a}, \quad B_1 = \frac{b_1}{b} \tag{7}
$$

og ljóst er að þessi breyting á hnitum varðveitir skurðpunkta, línu er breytt í línu, hring í hring, sporbaugi í sporbaug (eða hring sem sértilfelli) og ef lína er snertill sporbaugsins þá helst hún sem snertill sporbaugsins eftir hnitaskiptin (sjá mynd [2\)](#page-2-0). $\frac{1}{1}$ and adjustments to that's not always available, and adjustments to the system can usually only be seen to the system can usually only be seen to the system can usually only be seen to the system can usually only og ljóst er að þessi breyting á hnitum varðveitir skurðpunkta, línu er breytt í línu, hring í hri

Dæmi 1. Sannaðu þá staðreynd að ef lína og sporbaugur eru snertlar þá haldast þau sem snertlar eftir hnitaskiptin [\(5\)](#page-1-1). observe how the path of light actually changes. We want to demonstrate how the path of α D æ ${\rm m}$ 1. Sanna ou pa sta o reyna a o ej una og spor va ugur eru sner T_{tot} material for science teachers, who can use it to model experiments with lenses, w

Mynd 2: Sporbaugi er breytt í hring

Héðan í frá vinnum við með hring $k(O, 1)$ með miðju í upphafspunktinum O og radíus 1.

$$
x^2 + y^2 = 1.\t\t(8)
$$

og sporbaug e¹

og sporbaug
$$
e_1
$$

\n
$$
\frac{x^2}{a_1^2} + \frac{y^2}{b_1^2} = 1, \quad 1 > a_1 \ge b_1
$$
\n(9)

inni í $k(O, 1)$ $k(O, 1)$ $k(O, 1)$ eins og sést á mynd 1

Við útbúum lista af spurningum til að undirbúa lausnina á verkefninu (eða sönnunina á setningu Poncelets):

- Gefinn sporbaugur e_1 : $x^2/a_1^2 + y^2/b_1^2 = 1$ og punktur $A_0(x_0, y_0)$ á $k(O, 1)$ finnið snertilínurnar frá A_0 til e_1 og finnið einnig skurðpunkta þessara snertilína við hringinn $x^2{+}y^2=1.$ Köllum skurðpunktana A_1, A_2 (okkur vantar formúlu sem lýsir hnitum A_1, A_2 m.t.t. x_0, y_0 og halla línanna A_0A_1 og A_0A_2 , k_1, k_2 ;
- Finnið vensl milli φ_j og $\theta_{1,2} = \arctan k_{1,2}$ með því að nota stikunina

$$
x_j = \cos \varphi_j, y_j = \sin \varphi_j, \ j = 0, 1, 2 \tag{10}
$$

• Gefinn sporbaugur e_1 : $x^2/a_1^2 + y^2/b_1^2 = 1$, punktur $A_0(x_0, y_0)$ á $k(O, 1)$, snertilínur frá A_0 til e_1 sem skera $k(O, 1)$ í punktunum A_1, A_2 notið stikunina [\(10\)](#page-2-1) til að gefa, nauðsynleg og nægjanleg skilyrði þess að línan $A_0 A_1$ sé snertill sporbaugsins e_1 , táknað við φ_0, φ_1 og $\theta_1 = \arctan k_1$. $\sigma_1 = \arctan \mu_1.$

Dyna MAT

- Gefinn sporbaugur e_1 : $x^2/a_1^2 + y^2/b_1^2 = 1$, punktur $A_0(x_0, y_0)$ á $k(O, 1)$, snertilínur frá A_0 til e_1 , sem skera $k(O, 1)$ í punktunum A_1, A_2 , notið stikunina [\(10\)](#page-2-1) til að gefa, nauðsynleg og nægjanleg skilyrði þess að línan A_0A_1 sé snertill sporbaugsins e_1 , táknað við φ_0, φ_2 og $\theta_2 = \arctan k_2.$ **Modelling optical lenses with Dynamic Geometry Software**
- $\bullet\,$ Með því að nota einfaldar hornafallaumbreytingar sýndu að eftirfarandi tvö skilyrði a) línan A_0A_1 er snertill sporbaugsins e_1 (skilyrðinu er lýst m.t.t. φ_0 , φ_1 og $\theta_1 = \arctan k_1$) b) línan A_0A_2 er snertill sporbaugsins e_1 (skilyrðinu er lýst m.t.t. φ_0, φ_2 og $\theta_2 = \arctan k_2$) leiði til þess að δ a) interested by interesting to show a ray of light in all φ_0, φ_1 or φ_1 – arcter was any other way of φ_1

 \star línan A_1A_2 er snertill sporbaugsins e_1 (skilyrðinu er lýst m.t.t. φ_1, φ_2 og $\theta_{1,2} = \arctan k_{1,2}$)

.
Við gefum svör, skref fyrir skref, á nokkrum hjálparsetningum sem auðveldlega má sannreyna. observe how the path of the path of light and the path of the path of the path of α

Mynd 3: Hvenær er A_0A_1 snertill e_1 ? the angle of incidence (between the ray of light and the *normal*) is equal to the angle of reflection:

Hjálparsetning 1. Gefinn sporbaugur $e_1 : x^2/a_1^2 + y^2/b_1^2 = 1$, má lýsa nauðsynlegum og nægjanlegum skilyrðum þess að línan y – y₀ = k(x – x₀) gegnum punktinn $A_0(x_0, y_0)$ sé snertill e₁ með

$$
(y_0 - kx_0)^2 = b_1^2 + k^2 a_1^2.
$$

Hjálparsetning 2. Gefinn er sporbaugur e_1 : $x^2/a_1^2 + y^2/b_1^2 = 1$ og punktur $A_0(x_0, y_0)$ á einingarhringnum. Lína gegnum punktinn er táknuð með

$$
t: y - y_0 = k(x - x_0)
$$

og annar skurðpunktur þessarar línu við einingarhringinn, $k(O, 1) : x^2 + y^2 = 1$, er táknaður með $A_1(x_1, y_1)$. Þá er:

$$
x_1 = \frac{k^2 - 1}{k^2 + 1} x_0 - \frac{2k}{k^2 + 1} y_0,
$$

$$
y_1 = -\frac{2k}{k^2 + 1} x_0 - \frac{k^2 - 1}{k^2 + 1} y_0.
$$

Dyna MAT

Sönnun. Skurðpunktarnir eru gefnir með jöfnunum **Modelling optical lenses with Dynamic Geometry Software**

$$
x^2 + (y_0 + k(x - x_0))^2 = 1.
$$

Þessi jafna hefur tvær rætur x_0 og x_1 þ.a. **1 Introduction**

$$
x_0 + x_1 = -\frac{2k(y_0 - kx_0)}{1 + k^2}.
$$

of making light visible. To show the path of light in materials, you need special equipment – smoke Út frá þessum venslum fáum við lýsingu á x_1 . Á sama hátt fáum við lýsingu á y_1 . \Box Ut frá þessum venslum fáum við lýsingu á x_1 . A sama hátt fáum við lýsingu á y_1 .

Hjálparsetning 3. Gefinn sporbaugur e_1 : $x^2/a_1^2 + y^2/b_1^2 = 1$ og punktur $A_0(\cos\varphi_0, \sin\varphi_0)$ á $einingarhringnum, \not\!\vec{p} \not\!\vec{a} \ t \acute{a}knum \ vi\eth \ me\eth$ α removing one piece and putting and putting and putting another piece in α **the the current student in the current lens and put in the new order in the new one of the new order of the new order theorem in the new order th**

$$
t: y - y_0 = k(x - x_0)
$$

hvaða línu sem er í gegnum A_0 . Látum $A_1(x_1, y_1)$ vera skurðpunkt þessarar línu við einingarhringin $k(O, 1): x^2 + y^2 = 1$, þannig að $A_1 = (\cos \varphi, \sin \varphi)$. Þá taka venslin úr hjálparsetningu [2](#page-3-0) formið simulation, the pedagogic value is not pedagogic value is not pedagogic value in the same in the same is the u
It cannot be useful b $\frac{1}{\sqrt{1-\frac{1$

$$
\theta = \frac{\varphi + \varphi_0 - \pi}{2} + m\pi, m \in \mathbb{Z},
$$

þar sem light reaches the other surface of the lens – again mathematics is required to calculate the angle in \mathcal{L}

$$
\theta = \arctan k.
$$

 $Sönnun.$ Við höfum venslin

$$
\frac{k^2 - 1}{k^2 + 1} = -\cos(2\theta), \quad \frac{2k}{k^2 + 1} = \sin(2\theta).
$$

Með því að nota innsetninguna

$$
x_1 = \cos \varphi, \ y_1 = \sin \varphi
$$

fáum við **2. 2.1 Ref**

$$
\cos \varphi = -\cos(2\theta)\cos\varphi_0 - \sin(2\theta)\sin\varphi_0 =
$$

= $\cos(2\theta + \pi)\cos\varphi_0 + \sin(2\theta + \pi)\sin\varphi_0 = \cos(2\theta + \pi - \varphi_0),$
 $\sin \varphi = -\sin(2\theta)\cos\varphi_0 + \cos(2\theta)\sin\varphi_0 =$
= $\sin(2\theta + \pi)\cos\varphi_0 - \cos(2\theta + \pi)\sin\varphi_0 = \sin(2\theta + \pi - \varphi_0),$

og þessi vensl gefa

$$
2\theta + \pi - \varphi_0 = \varphi + 2m\pi, m \in \mathbb{Z}.
$$

Þar með er sönnuninni lokið.

Hjálparsetning 4. Gefinn sporbaugur $e_1 : x^2/a_1^2 + y^2/b_1^2 = 1$ og punktur $A_0 = (\cos \varphi_0, \sin \varphi_0)$, þá táknum við með

$$
t: y - y_0 = k(x - x_0)
$$

hvaða línu sem er í gegnum A_0 og með A_1 skurðpunkt línunnar við hringinn $e: x^2 + y^2 = 1$, þ.a. $A_1 = (\cos \varphi, \sin \varphi)$. Þá er t snertill e₁ ef og aðeins ef

$$
\cos^2\left(\frac{\varphi-\varphi_0}{2}\right) = b_1^2 \sin^2\left(\frac{\varphi+\varphi_0}{2}\right) + a_1^2 \cos^2\left(\frac{\varphi+\varphi_0}{2}\right) = (a_1^2 - b_1^2) \cos^2\left(\frac{\varphi+\varphi_0}{2}\right) + b_1^2.
$$

 \Box

Dyna MAT

Sönnun. Út frá hjálparsetningu [1](#page-3-1) sést að við þurfum að umskrifa $(y_0 - kx_0)^2$ yfir í fall af φ og φ_0 . Við höfum **Modelling optical lenses with Dynamic Geometry Software**

$$
y_0 - kx_0 = \frac{\cos\theta \sin\varphi_0 - \sin\theta \cos\varphi_0}{\cos\theta} = \frac{\sin(\varphi_0 - \theta)}{\cos\theta}.
$$
 (11)

 $\text{Með því að nota venslin}$

$$
\theta = \frac{\varphi + \varphi_0 - \pi}{2} + m\pi, m \in \mathbb{Z},
$$

úr hjálparsetningu [3](#page-4-0) sjáum við að teljarinn í (11) er

$$
\sin(\varphi_0 - \theta) = \sin\left(\frac{\varphi_0 - \varphi + \pi}{2} - m\pi\right) = (-1)^m \cos\left(\frac{\varphi_0 - \varphi}{2}\right)
$$

meðan nefnarinn verður

$$
\cos \theta = \cos \left(\frac{\varphi + \varphi_0 - \pi}{2} + m\pi \right) = (-1)^m \sin \left(\frac{\varphi + \varphi_0}{2} \right)
$$

svo við fáum simulation, the pedagogic value is not quite the same), but *complementing* it. It can as well be useful

$$
\sin^2\left(\frac{\varphi+\varphi_0}{2}\right)(y_0-kx_0)^2=\cos^2\left(\frac{\varphi-\varphi_0}{2}\right).
$$

Með því að beita hjálparsetningu [1](#page-3-1) á venslin hér að ofan þá ljúkum við sönnun hjálparsetningarinnar. Með því að beita hjálparsetningu 1 á venslin hér að ofan þá ljúkum við sonnun hjálparsetningar:

 \Box

Athugasemd 1. Við getum endurskrifað venslin í hjálparsetningu [4](#page-4-1) á mismunandi vegu með \mathbf{p} ví að nota formúluna \mathbf{p} $\frac{1 + \cos(2\alpha)}{1 + \cos(2\alpha)}$

$$
\cos^2\alpha=\frac{1+\cos(2\alpha)}{2},
$$

Þannig fæst

cos(ϕ − ϕ0) = c 2 cos(ϕ + ϕ0) + D, (12) **2 Easy beginnings – light hits a plane surface**

eða **2.1 Reflection**

$$
(1 - c2) \cos \varphi \cos \varphi_0 + (1 + c2) \sin \varphi \sin \varphi_0 = D,
$$
 (13)

þar sem

$$
c2 = a12 - b12, D = a12 + b12 - 1.
$$
 (14)

3 Sönnun á setningu Poncelets með hornaföllum

Við tökum punkt $A_0 = (cos\varphi_0, sin\varphi_0)$ á einingarhringnum og finnum tvær snertilínur t_1, t_2 gegnum A_0 að sporbaugnum

$$
e_1 = \frac{x^2}{a_1^2} + \frac{y^2}{b_1^2} = 1.
$$

Síðan finnum við skurðpunkta t_1, t_2 við einingahringinn (sjá mynd [4\)](#page-6-0) og táknum skurðpunktana tvo (frábrugðna A_0) með

$$
B_0(cos\varphi_1, sin \varphi_1), C_0(cos\varphi_2, sin \varphi_2).
$$

Byrjum á að setja fram forsendu Poncelets þannig að til sé a.m.k. einn þríhyrningur, $\Delta A_0 B_0 C_0$, innritaður í einingarhringinn, þ.e.

$$
A_0 = (cos\varphi_0, sin\varphi_0), B_0 = (cos\varphi_1, sin\varphi_1), C_0 = (cos\varphi_2, sin\varphi_2), 0 \le \varphi_0 < \varphi_1 < \varphi_2 \le 2\pi
$$

Mynd 4: Merking forsendunnar að $\Delta A_0 B_0 C_0$ sé umritaður á e_1 ? light hits the glass surface of an optical lens, a part of it gets reflected back in a certain angle, and

og umritaður um innri sporbauginn e_1 Þar sem A_0B_0 er snertill við e_1 vitum við að: which the light is reflected and refracted. For ideal lenses, there is an easy equation calculating these

$$
\cos^2\left(\frac{\varphi_1 - \varphi_0}{2}\right) = (a_1^2 - b_1^2)\cos^2\left(\frac{\varphi_1 + \varphi_0}{2}\right) + b_1^2\tag{15}
$$

(skv. hjálparsetningu [4\)](#page-4-1). Á sama hátt gefur sú staðreynd að A_0C_0 og B_0C_0 eru snertlar e_1 og hjálparsetning [4](#page-4-1) að $\frac{1}{2}$ etc. But even for the DGS, we need the DGS, we need the simulation in the first place.

$$
\cos^2\left(\frac{\varphi_2 - \varphi_0}{2}\right) = (a_1^2 - b_1^2)\cos^2\left(\frac{\varphi_2 + \varphi_0}{2}\right) + b_1^2.
$$
 (16)

$$
\cos^2\left(\frac{\varphi_2 - \varphi_1}{2}\right) = (a_1^2 - b_1^2)\cos^2\left(\frac{\varphi_2 + \varphi_1}{2}\right) + b_1^2. \tag{17}
$$

Við getum sameinað öll þessi vensl í ein

$$
\cos^2\left(\frac{\varphi_j - \varphi_\ell}{2}\right) = (a_1^2 - b_1^2)\cos^2\left(\frac{\varphi_j + \varphi_\ell}{2}\right) + b_1^2, \ \ 0 \le j \neq \ell \le 2. \tag{18}
$$

Hvað vitum við út frá forsendu setningar Poncelets og hvað þurfum við að sanna?

Við tökum hvaða punkt $A = (cos\psi_0, sin \psi_0)$ sem er á einingarhringnum og finnum snertilínurnar t_1, t_2 gegnum A_0 að sporbaugnum

$$
e_1 : \frac{x^2}{a_1^2} + \frac{y^2}{b_1^2} = 1.
$$

Síðan finnum við skurðpunkta t_1, t_2 við einingahringinn (sjá mynd [5\)](#page-7-0) og táknum skurðpunktana tvo (sem eru frábrugðnir A) með

$$
B = (cos\psi_1, sin\psi_1), C = (cos\psi_2, sin\psi_2).
$$

Mynd 5: Tvær hliðar eru snertlar \Rightarrow þriðja hliðin einnig snertill light state model is the glass surface of an optical lens, and it gets reflecting back in

 $\text{Par sem } AB \text{ er snertill } e_1 \text{ vitum við að:}$ which the light is reflected and reflected. For ideal lenses, there is an easy equation calculating these systems \mathcal{L}

$$
\cos^2\left(\frac{\psi_1 - \psi_0}{2}\right) = (a_1^2 - b_1^2)\cos^2\left(\frac{\psi_1 + \psi_0}{2}\right) + b_1^2\tag{19}
$$

(vegna hjálparsetningar [4\)](#page-4-1). Eins, sú staðreynd að A_0C_0 og B_0C_0 eru snertlar e_1 og hjálparsetning [4](#page-4-1) leiða til $\frac{1}{2}$ etc. But even for the DGS, we need the simulation in the first place.

$$
\cos^2\left(\frac{\psi_2 - \psi_0}{2}\right) + (a_1^2 - b_1^2)\cos^2\left(\frac{\psi_2 + \psi_0}{2}\right) = b_1^2.
$$
 (20)

Við drögum þá saman allar forsendur setningu Poncelets og getum sagt að [\(18\)](#page-6-1), [\(19\)](#page-7-1) and [\(20\)](#page-7-2) **2.1 Reflection** séu sannaðar. When a ray of light hits a plane glass surface, a part of it is reflected. The *law of reflection* says that

Hvað þurfum við þá að sanna?

Með hjálparsetningu [4](#page-4-1) í huga sjáum við að markmið okkar er að sýna

$$
\cos^2\left(\frac{\psi_2 - \psi_1}{2}\right) = (a_1^2 - b_1^2)\cos^2\left(\frac{\psi_2 + \psi_1}{2}\right) + b_1^2.
$$
 (21)

Rita má þessi vensl sem

$$
(1 - c2) cos ψ_2 cos ψ_1 = (1 + c²) sin ψ_2 sin ψ_1 + D, (22)
$$

þar sem

$$
c^2 = a_1^2 - b_1^2, D = a_1^2 + b_1^2 - 1.
$$
\n(23)

samkvæmt athugasemd [1](#page-5-1)

Nú erum við loks komin í þá stöðu að við getum beitt hjálparsetningunni um hornaföll úr viðaukanum og ályktum að

$$
\cos^2\left(\frac{\psi_2 - \psi_1}{2}\right) = \frac{4c^2D^2}{(1 - c^2)^2(1 + c^2)^2}\cos^2\left(\frac{\psi_2 + \psi_1}{2}\right) + \frac{D^2}{(1 + c^2)^2}.
$$
 (24)

Dyna MAT

Með því að bera þessi vensl saman við [\(21\)](#page-7-3) sjáum við að þörf er á eftirfarandi skilyrðum **Modelling optical lenses with Dynamic Geometry Software** Andreas Ulovec

$$
4D^2 = (1 - c^2)^2 (1 + c^2)^2, \ D^2 = b_1^2 (1 + c^2)^2 \tag{25}
$$

Þessi vensl og [\(23\)](#page-7-4) leiða til eftirfarandi nægjanlegs skilyrðis In our comes down to show the path of α rays of α rays of α rays or systems of α

$$
a_1 + b_1 = 1 \tag{26}
$$

sem leiðir til þess að \triangle ABC er umritaður um e_1 . Skilyrðið [\(23\)](#page-7-4) er einnig nauðsynlegt til að uppfylla eiginleikann and adjustments to that's not always available, and adjustments to the system can usually only be seen to the system can usually only be seen to the system can usually only be seen to the system can u d_{max} removing and putting another piece in. To see what happens if $\frac{d}{dt}$

• til er þríhyrningur $\Delta A_0 B_0 C_0$ umritaður um e_1 . • the change between $\Delta A_0 B_0 C_0$ untitiation and e_1 .

Ef til er a.m.k. einn $\Delta A_0 B_0 C_0$ umritaður um e_1 þá gildir [\(26\)](#page-8-0) og þar af leiðandi er ΔABC umritaður um e_1 .

Par með er sönnun setningarinnar lokið. simulation, the pedagogic value is not quite the same), but *complementing* it. It can as well be useful

4 Viðauki: Hjálparsetning um hornaföll light hits the glass surface of an optical lens, a part of it gets reflected back in a certain angle, and

Hjálparsetning 5. $G.r.f.$ að \mathbf{r} reaches the lens – again mathematics is required to calculate the again mathematics is required to calculate the angle in \mathbf{r}

$$
\sin\left(\frac{\psi_1 - \psi_2}{2}\right) \neq 0, \cos\left(\frac{\psi_1 + \psi_2}{2}\right) \neq 0, \cos\psi_0 \neq 0
$$

og

$$
\begin{cases}\n(1 - c^2) \cos \psi_1 \cos \psi_0 + (1 + c^2) \sin \psi_1 \sin \psi_0 = D \n(1 - c^2) \cos \psi_2 \cos \psi_0 + (1 + c^2) \sin \psi_2 \sin \psi_0 = D\n\end{cases}
$$
\n(27)

Þá er

$$
(1 - c2)\tan\left(\frac{\psi_1 + \psi_2}{2}\right) = (1 + c2)\tan\psi_0
$$
 (28)

og ennfremur When a ray of light hits a plane glass surface, a part of it is reflected. The *law of reflection* says that

$$
\cos^2\left(\frac{\psi_2 - \psi_1}{2}\right) = \frac{4c^2D^2}{(1 - c^2)^2(1 + c^2)^2}\cos^2\left(\frac{\psi_2 + \psi_1}{2}\right) + \frac{D^2}{(1 + c^2)^2}.
$$
 (29)

Sönnun. Tökum mismun venslanna í jöfnu [\(27\)](#page-8-1). Fáum

$$
-(1-c^2)\sin\left(\frac{\psi_1-\psi_2}{2}\right)\sin\left(\frac{\psi_1+\psi_2}{2}\right)\cos\psi_0+(1+c^2)\sin\left(\frac{\psi_1-\psi_2}{2}\right)\cos\left(\frac{\psi_1+\psi_2}{2}\right)\sin\psi_0=0.
$$

Forsendan

$$
\sin\left(\frac{\psi_1 - \psi_2}{2}\right) \neq 0
$$

leiðir til þess að

$$
(1 - c2) sin \left(\frac{\psi_1 + \psi_2}{2}\right) cos \psi_0 = (1 + c2) cos \left(\frac{\psi_1 + \psi_2}{2}\right) sin \psi_0.
$$

Þetta sannar [\(28\)](#page-8-2). Leiða má út hin venslin með því að framkvæma eftirfarandi áætlun

• fyrsta jafnan í $(27) \times \sin \psi_2$ $(27) \times \sin \psi_2$ – önnur jafnan í $(27) \times \sin \psi_1$;

Dyna MAT

• fyrsta jafnan í $(27) \times \cos \psi_2$ $(27) \times \cos \psi_2$ – önnur jafnan í $(27) \times \cos \psi_1$. **Modelling optical lenses with Dynamic Geometry Software** Andreas Ulovec

Á þennan hátt fáum við

$$
2D\sin\left(\frac{\psi_2-\psi_1}{2}\right)\cos\left(\frac{\psi_2+\psi_1}{2}\right) = 2(1-c^2)\sin\left(\frac{\psi_2-\psi_1}{2}\right)\cos\left(\frac{\psi_2-\psi_1}{2}\right)\cos\psi_0,
$$

$$
-2D\sin\left(\frac{\psi_2-\psi_1}{2}\right)\sin\left(\frac{\psi_2+\psi_1}{2}\right) = -2(1+c^2)\sin\left(\frac{\psi_2-\psi_1}{2}\right)\cos\left(\frac{\psi_2-\psi_1}{2}\right)\sin\psi_0,
$$

so með því að nota forsenduna

$$
\sin\left(\frac{\psi_1 - \psi_2}{2}\right) \neq 0
$$

fáum við

$$
\frac{D}{1-c^2}\cos\left(\frac{\psi_2+\psi_1}{2}\right) = \cos\left(\frac{\psi_2-\psi_1}{2}\right)\cos\psi_0,
$$

$$
\frac{D}{1+c^2}\sin\left(\frac{\psi_2+\psi_1}{2}\right) = \cos\left(\frac{\psi_2-\psi_1}{2}\right)\sin\psi_0.
$$

Með því að taka summu þessara samsemda í öðru veldi fáum við

$$
\frac{D^2}{(1-c^2)^2} \cos^2\left(\frac{\psi_2 + \psi_1}{2}\right) + \frac{D^2}{(1+c^2)^2} \sin^2\left(\frac{\psi_2 + \psi_1}{2}\right) = \cos^2\left(\frac{\psi_2 - \psi_1}{2}\right)
$$

og þessi jafna gefur [\(29\)](#page-8-3)

Þar með lýkur sönnun hjálparsetningarinnar. et at the t_j and some mathematics the parameter the simulation in the first place.

 \Box

Heimildir **2.1 Reflection**

- [1] H. J. M. Bos, C. Kers, F. Oort, and D. W. Raven, *Poncelet's closure theorem*, Expo. Math. 5 (1987), $289 - 364$.
- [2] A. Cayley, Note on the porism of the in-and-circumscribed polygon, Philosophical magazine 6 (1853), 99-102.
- [3] A. Cayley, Developments on the porism of the in-and-circumscribed polygon, Philosophical magazine 7 (1854), 339-345.
- [4] H. Dörrie, 100 great problems in Mathematics. Their history and solutions, Dover Publ., New York, (1965).
- [5] V. Dragovic, M. Radnovic Poncelet Porisms and Beyond, Birkhäuser, Springer-Basel, (2011).
- [6] L.Flatto, Poncelet's Theorem, AMS, (2008).
- [7] J. V. Poncelet, Traite sur les Proprietes des Figures, Paris, (1822).
- [8] S.Tabachnikov, *Geometry and Billiards*, Students Mathematica Library, (2005)