

DynaMAT

# Setning Poncelets og lotubundnir þríhyrningar í sporbaugi

Vladimir Georgiev, Veneta Nedyalkova Íslensk þýðing, Ragnar Stefánsson

# 1 Sögulegur inngangur

Ein af mikilvægustu og fallegustu setningunum í varpfræði er setning Poncelets, sem fjallar um lokaða marghyrninga sem eru innritaðir í eitt keilusnið og umritaðir um annað keilusnið (að neðan gefum við nákvæmu yrðinguna og sönnum við hana í tilfelli þríhyrninga). Setningin hefur djúp tengsl við önnur svið stærðfræðinnar. Markmið þessa kaflahluta er að skýra nánar út tengslin milli setningu Poncelets og biljarðs í sporbaugi. Við fyrstu sýn virðast þessi viðfangsefni vera ótengd þar sem þau koma úr tveimur óháðum stærðfræðisviðum: rúmfræði og hreyfikerfi. En falinn þráður tengir þessi viðfangsefni saman: tilvist undirliggjandi fyrirbæris (sem við nefnum Poncelet samsvörunina) sem reynist vera sporbaugsferill. Það er vel þekkt að hægt er að skilgreina grúpumynstur á sporbaugsferlum og hagnýting þess varpar miklu ljósi á fyrrnefnd viðfangsefni.

Til að lesa flestar bækur tengdar þessu viðfangefni þarf undirstöðu í tvinnfallagreiningu, línulegri algebru og grannfræði og því er ekki einfalt að búa til verkefni sem henta nemendum á framhaldsskólastigi.

Við reynum því að finna nálgun sem krefst einungis þeirra verkfæra sem finnast í venjulegri framhaldsskólanámsskrá. Þetta er ekki auðleyst vandamál. Hin klassíska A. Cayley nálgun (sjá [2], [3]) notar sporbaugsheildi, aðrar heimildir (sjá [5], [6], [8] og heimildirnar sem er þar vísað í) beita rökum úr varprúmfræði og grúpufræði.

Fyrir framsetningu á verkefni Poncelets þarf einungis að þekkja skilgreiningu og jöfnu sporbaugs.

**Setning 1.** (Setning Poncelets) Gerum ráð fyrir að gefnir séu tveir sporbaugar þannig að annar sé inni í hinum. Ef til er n-hyrningur sem er innritaður í öðrum sporbaugnum og umritaður um hinn sporbauginn þá er sérhver punktur á jaðri ytri sporbaugsins hornpunktur í umrituðum n-hyrningi innra sporbaugsins.

Til eru nokkrar sannanir á þessari merkilegu setningu, flestar þeirra eru ekki einfaldar. Rekja má setningu Poncelets til nítjándu aldar og veittu margir stærðfræðingar þess tíma henni athygli (ítarleg sögulýsing er gefin í [1]). Aðalástæðan fyrir þessu er sú staðreynd að margar sannanir setningarinnar krefjast notkunar tvinntölu- og einsleitra hnita, hugtaka sem voru að koma fram á þeim tíma (1813) þegar Poncelet uppgötvaði setninguna. Það gerði hann meðan hann var í haldi sem stríðsfangi í Rússnesku borginni Saratov. Eftir að hann snéri aftur heim til Frakklands birti hann sönnunina í bók sinni [7], sem gefin var út árið 1822. Sönnunin, sem var fremur margbrotin, einfaldar setninguna í tvo (ekki endilega sammiðja) hringi. Umræða um hugmyndirnar í sönnun Poncelets er gefin í [1], bls. 298 - 311.

Tilgangur okkar er að finna einfalda sönnun á tilfelli sem er ekki augljóst: tilfelliðn=3 og þar sem við höfum tvo sporbauga

$$e: \quad \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \tag{1}$$

og

$$e_1: \frac{x^2}{a_1^2} + \frac{y^2}{b_1^2} = 1,$$
 (2)

þannig að  $e_1$  sé innan e.

Við munum sanna þetta tilfelli setningar Poncelets og auk þess eftirfarandi sértækari niðurstöðu.







Mynd 1: Setning Poncelet í tilfelli hrings og sporbaugs

Setning 2. (sjá mynd 1) G.r.f. að sporbaugurinn (2) sé innan sporbaugsins (1), p.e.

$$a > b > 0, a_1 > b_1 > 0,$$
  
 $a > a_1, b > b_1.$ 

Þá eru eftirfarandi skilyrði jafngild:

i) til er þríhyrningur  $\triangle A_0 B_0 C_0$  innritaður í e og umritaður um  $e_1$ , ii) tölurnar  $a, b, a_1$  og  $b_1$  uppfylla

$$\frac{a_1}{a} + \frac{b_1}{b} = 1$$

iii) fyrir hvaða punkt A sem er á sporbaugnum e getum við fundið einkvæmt ákvarðaðan þríhyrning  $\triangle ABC$  innritaðan í e og umritaðan um  $e_1$ .

#### 2 Einskorðun við hring og sporbaug

Skoðum tvo sporbauga

$$e: \quad \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \tag{3}$$

og

$$e_1: \ \frac{x^2}{a_1^2} + \frac{y^2}{b_1^2} = 1, \tag{4}$$

þ.a.  $e_1$ er innan e.Þessu skilyrði má lýsa sem

 $a > b > 0, a_1 > b_1 > 0,$  $a > a_1, b > b_1.$ 

Með einföldum hnitaskiptum í planinu,

$$X = \frac{x}{a}, \quad Y = \frac{y}{b},\tag{5}$$



Uyna MAT

hefur sporbaugurinneí nýju hnitunum jöfnuna

$$X^2 + Y^2 = 1 (6)$$

þ.a. hann er hringurin<br/>nk(O,1)með miðju í upphafspunkti nýja hnitakerfisin<br/>sOog radíus 1.

Hinn sporbaugurinn  $e_1$  verður

$$\frac{X^2}{A_1^2} + \frac{Y^2}{B_1^2} = 1, \quad A_1 = \frac{a_1}{a}, \quad B_1 = \frac{b_1}{b}$$
(7)

og ljóst er að þessi breyting á hnitum varðveitir skurðpunkta, línu er breytt í línu, hring í hring, sporbaugi í sporbaug (eða hring sem sértilfelli) og ef lína er snertill sporbaugsins þá helst hún sem snertill sporbaugsins eftir hnitaskiptin (sjá mynd 2).

**Dæmi 1.** Sannaðu þá staðreynd að ef lína og sporbaugur eru snertlar þá haldast þau sem snertlar eftir hnitaskiptin (5).



Mynd 2: Sporbaugi er breytt í hring

Héðan í frá vinnum við með hring k(O, 1) með miðju í upphafspunktinum O og radíus 1.

$$x^2 + y^2 = 1. (8)$$

og sporbaug  $e_1$ 

$$\frac{x^2}{a_1^2} + \frac{y^2}{b_1^2} = 1, \quad 1 > a_1 \ge b_1 \tag{9}$$

inni í k(O, 1) eins og sést á mynd 1

Við útbúum lista af spurningum til að undirbúa lausnina á verkefninu (eða sönnunina á setningu Poncelets):

- Gefinn sporbaugur  $e_1 : x^2/a_1^2 + y^2/b_1^2 = 1$  og punktur  $A_0(x_0, y_0)$  á k(O, 1) finnið snertilínurnar frá  $A_0$  til  $e_1$  og finnið einnig skurðpunkta þessara snertilína við hringinn  $x^2+y^2 = 1$ . Köllum skurðpunktana  $A_1, A_2$  (okkur vantar formúlu sem lýsir hnitum  $A_1, A_2$  m.t.t.  $x_0, y_0$  og halla línanna  $A_0A_1$  og  $A_0A_2, k_1, k_2$ );
- Finnið vensl milli $\varphi_j$  og  $\theta_{1,2} = \arctan k_{1,2}$  með því að nota stikunina

$$x_j = \cos\varphi_j, y_j = \sin\varphi_j, \ j = 0, 1, 2 \tag{10}$$

• Gefinn sporbaugur  $e_1 : x^2/a_1^2 + y^2/b_1^2 = 1$ , punktur  $A_0(x_0, y_0)$  á k(O, 1), snertilínur frá  $A_0$  til  $e_1$  sem skera k(O, 1) í punktunum  $A_1, A_2$  notið stikunina (10) til að gefa, nauðsynleg og nægjanleg skilyrði þess að línan  $A_0A_1$  sé snertill sporbaugsins  $e_1$ , táknað við  $\varphi_0, \varphi_1$  og  $\theta_1 = \arctan k_1$ .



DynaMAT

- Gefinn sporbaugur  $e_1 : x^2/a_1^2 + y^2/b_1^2 = 1$ , punktur  $A_0(x_0, y_0)$  á k(O, 1), snertilínur frá  $A_0$  til  $e_1$ , sem skera k(O, 1) í punktunum  $A_1, A_2$ , notið stikunina (10) til að gefa, nauðsynleg og nægjanleg skilyrði þess að línan  $A_0A_1$  sé snertill sporbaugsins  $e_1$ , táknað við  $\varphi_0, \varphi_2$  og  $\theta_2 = \arctan k_2$ .
- Með því að nota einfaldar hornafallaumbreytingar sýndu að eftirfarandi tvö skilyrði
  a) línan A<sub>0</sub>A<sub>1</sub> er snertill sporbaugsins e<sub>1</sub> (skilyrðinu er lýst m.t.t. φ<sub>0</sub>, φ<sub>1</sub> og θ<sub>1</sub> = arctan k<sub>1</sub>)
  b) línan A<sub>0</sub>A<sub>2</sub> er snertill sporbaugsins e<sub>1</sub> (skilyrðinu er lýst m.t.t. φ<sub>0</sub>, φ<sub>2</sub> og θ<sub>2</sub> = arctan k<sub>2</sub>)
  leiði til þess að

\* línan  $A_1A_2$  er snertill sporbaugsins  $e_1$  (skilyrðinu er lýst m.t.t.  $\varphi_1, \varphi_2 \text{ og } \theta_{1,2} = \arctan k_{1,2}$ )

Við gefum svör, skref fyrir skref, á nokkrum hjálparsetningum sem auðveldlega má sannreyna.



**Mynd 3:** Hvenær er  $A_0A_1$  snertill  $e_1$ ?

**Hjálparsetning 1.** Gefinn sporbaugur  $e_1 : x^2/a_1^2 + y^2/b_1^2 = 1$ , má lýsa nauðsynlegum og nægjanlegum skilyrðum þess að línan  $y - y_0 = k(x - x_0)$  gegnum punktinn  $A_0(x_0, y_0)$  sé snertill  $e_1$  með

$$(y_0 - kx_0)^2 = b_1^2 + k^2 a_1^2.$$

**Hjálparsetning 2.** Gefinn er sporbaugur  $e_1 : x^2/a_1^2 + y^2/b_1^2 = 1$  og punktur  $A_0(x_0, y_0)$  á einingarhringnum. Lína gegnum punktinn er táknuð með

$$t: y - y_0 = k(x - x_0)$$

og annar skurðpunktur þessarar línu við einingarhringinn,  $k(O,1): x^2 + y^2 = 1$ , er táknaður með  $A_1(x_1, y_1)$ . Þá er:

$$x_1 = \frac{k^2 - 1}{k^2 + 1} x_0 - \frac{2k}{k^2 + 1} y_0,$$
$$y_1 = -\frac{2k}{k^2 + 1} x_0 - \frac{k^2 - 1}{k^2 + 1} y_0.$$



Dyna MAT

Sönnun. Skurðpunktarnir eru gefnir með jöfnunum

$$x^{2} + (y_{0} + k(x - x_{0}))^{2} = 1.$$

Þessi jafna hefur tvær rætur  $x_0$  og  $x_1$  þ.a.

$$x_0 + x_1 = -\frac{2k(y_0 - kx_0)}{1 + k^2}.$$

Út frá þessum venslum fáum við lýsingu á  $x_1$ . Á sama hátt fáum við lýsingu á  $y_1$ .

**Hjálparsetning 3.** Gefinn sporbaugur  $e_1 : x^2/a_1^2 + y^2/b_1^2 = 1$  og punktur  $A_0(\cos \varphi_0, \sin \varphi_0)$  á einingarhringnum, þá táknum við með

$$t: y - y_0 = k(x - x_0)$$

hvaða línu sem er í gegnum  $A_0$ . Látum  $A_1(x_1, y_1)$  vera skurðpunkt þessarar línu við einingarhringin  $k(O, 1) : x^2 + y^2 = 1$ , þannig að  $A_1 = (\cos \varphi, \sin \varphi)$ . Þá taka venslin úr hjálparsetningu 2 formið

$$\theta = \frac{\varphi + \varphi_0 - \pi}{2} + m\pi, m \in \mathbb{Z},$$

 $par \ sem$ 

$$\theta = \arctan k$$

Sönnun. Við höfum venslin

$$\frac{k^2 - 1}{k^2 + 1} = -\cos(2\theta), \quad \frac{2k}{k^2 + 1} = \sin(2\theta).$$

Með því að nota innsetninguna

$$x_1 = \cos \varphi, \ y_1 = \sin \varphi$$

fáum við

$$\cos \varphi = -\cos(2\theta) \cos \varphi_0 - \sin(2\theta) \sin \varphi_0 =$$
$$= \cos(2\theta + \pi) \cos \varphi_0 + \sin(2\theta + \pi) \sin \varphi_0 = \cos(2\theta + \pi - \varphi_0),$$
$$\sin \varphi = -\sin(2\theta) \cos \varphi_0 + \cos(2\theta) \sin \varphi_0 =$$
$$= \sin(2\theta + \pi) \cos \varphi_0 - \cos(2\theta + \pi) \sin \varphi_0 = \sin(2\theta + \pi - \varphi_0),$$

og þessi vensl gefa

$$2\theta + \pi - \varphi_0 = \varphi + 2m\pi, m \in \mathbb{Z}$$

Þar með er sönnuninni lokið.

**Hjálparsetning 4.** Gefinn sporbaugur  $e_1 : x^2/a_1^2 + y^2/b_1^2 = 1$  og punktur  $A_0 = (\cos \varphi_0, \sin \varphi_0)$ , bá táknum við með

$$t: y - y_0 = k(x - x_0)$$

hvaða línu sem er í gegnum  $A_0$  og með  $A_1$  skurðpunkt línunnar við hringinn  $e: x^2 + y^2 = 1$ , p.a. $A_1 = (\cos \varphi, \sin \varphi)$ . Pá er t snertill  $e_1$  ef og aðeins ef

$$\cos^2\left(\frac{\varphi-\varphi_0}{2}\right) = b_1^2 \sin^2\left(\frac{\varphi+\varphi_0}{2}\right) + a_1^2 \cos^2\left(\frac{\varphi+\varphi_0}{2}\right) = (a_1^2 - b_1^2) \cos^2\left(\frac{\varphi+\varphi_0}{2}\right) + b_1^2.$$



**Dyna**MAT

Sönnun. Út frá hjálparsetningu 1 sést að við þurfum að umskrifa  $(y_0 - kx_0)^2$ yfir í fall af  $\varphi$  og  $\varphi_0$ . Við höfum

$$y_0 - kx_0 = \frac{\cos\theta\sin\varphi_0 - \sin\theta\cos\varphi_0}{\cos\theta} = \frac{\sin(\varphi_0 - \theta)}{\cos\theta}.$$
 (11)

Með því að nota venslin

$$\theta = \frac{\varphi + \varphi_0 - \pi}{2} + m\pi, m \in \mathbb{Z},$$

úr hjálparsetningu 3 sjáum við að teljarinn í (11) er

$$\sin(\varphi_0 - \theta) = \sin\left(\frac{\varphi_0 - \varphi + \pi}{2} - m\pi\right) = (-1)^m \cos\left(\frac{\varphi_0 - \varphi}{2}\right)$$

meðan nefnarinn verður

$$\cos\theta = \cos\left(\frac{\varphi + \varphi_0 - \pi}{2} + m\pi\right) = (-1)^m \sin\left(\frac{\varphi + \varphi_0}{2}\right)$$

svo við fáum

$$\sin^2\left(\frac{\varphi+\varphi_0}{2}\right)(y_0-kx_0)^2=\cos^2\left(\frac{\varphi-\varphi_0}{2}\right).$$

Með því að beita hjálparsetningu 1 á venslin hér að ofan þá ljúkum við sönnun hjálparsetningarinnar.

Athugasemd 1. Við getum endurskrifað venslin í hjálparsetningu 4 á mismunandi vegu með því að nota formúluna

$$\cos^2 \alpha = \frac{1 + \cos(2\alpha)}{2},$$

Panniq fæst

$$\cos(\varphi - \varphi_0) = c^2 \cos(\varphi + \varphi_0) + D, \qquad (12)$$

 $e\delta a$ 

$$(1 - c^2)\cos\varphi\cos\varphi_0 + (1 + c^2)\sin\varphi\sin\varphi_0 = D,$$
(13)

þar sem

$$c^{2} = a_{1}^{2} - b_{1}^{2}, D = a_{1}^{2} + b_{1}^{2} - 1.$$
(14)

### 3 Sönnun á setningu Poncelets með hornaföllum

Við tökum punkt  $A_0 = (\cos\varphi_0, \sin\varphi_0)$  á einingarhringnum og finnum tvær snertilínur  $t_1, t_2$  gegnum  $A_0$  að sporbaugnum

$$e_1 = \frac{x^2}{a_1^2} + \frac{y^2}{b_1^2} = 1$$

Síðan finnum við skurðpunkta $t_1,t_2$ við einingahringinn (sjá mynd 4) og táknum skurðpunktana tvo (frábrugðna $A_0)$ með

$$B_0(\cos\varphi_1,\sin\varphi_1), C_0(\cos\varphi_2,\sin\varphi_2)$$

Byrjum á að setja fram forsendu Poncelets þannig að til sé a.m.k. einn þríhyrningur,  $\triangle A_0 B_0 C_0$ , innritaður í einingarhringinn, þ.e.

$$A_0 = (\cos\varphi_0, \sin\varphi_0), B_0 = (\cos\varphi_1, \sin\varphi_1), C_0 = (\cos\varphi_2, \sin\varphi_2), \quad 0 \le \varphi_0 < \varphi_1 < \varphi_2 \le 2\pi$$







**Mynd 4:** Merking forsendunnar að  $\triangle A_0 B_0 C_0$  sé umritaður á  $e_1$ ?

og umritaður um innri sporbauginn  $e_1$  Þar sem  $A_0B_0$  er snertill við  $e_1$  vitum við að:

$$\cos^{2}\left(\frac{\varphi_{1}-\varphi_{0}}{2}\right) = (a_{1}^{2}-b_{1}^{2})\cos^{2}\left(\frac{\varphi_{1}+\varphi_{0}}{2}\right) + b_{1}^{2}$$
(15)

(skv. hjálparsetningu 4). Á sama hátt gefur sú staðreynd að  $A_0C_0$  og  $B_0C_0$  eru snertlar  $e_1$  og hjálparsetning 4 að

$$\cos^{2}\left(\frac{\varphi_{2}-\varphi_{0}}{2}\right) = (a_{1}^{2}-b_{1}^{2})\cos^{2}\left(\frac{\varphi_{2}+\varphi_{0}}{2}\right) + b_{1}^{2}.$$
(16)

$$\cos^{2}\left(\frac{\varphi_{2}-\varphi_{1}}{2}\right) = (a_{1}^{2}-b_{1}^{2})\cos^{2}\left(\frac{\varphi_{2}+\varphi_{1}}{2}\right) + b_{1}^{2}.$$
(17)

Við getum sameinað öll þessi vensl í ein

$$\cos^2\left(\frac{\varphi_j - \varphi_\ell}{2}\right) = (a_1^2 - b_1^2)\cos^2\left(\frac{\varphi_j + \varphi_\ell}{2}\right) + b_1^2, \quad 0 \le j \ne \ell \le 2.$$
(18)

Hvað vitum við út frá forsendu setningar Poncelets og hvað þurfum við að sanna?

Við tökum hvaða punkt  $A = (\cos \psi_0, \sin \psi_0)$  sem er á einingarhringnum og finnum snertilínurnar  $t_1, t_2$  gegnum  $A_0$  að sporbaugnum

$$e_1: \frac{x^2}{a_1^2} + \frac{y^2}{b_1^2} = 1.$$

Síðan finnum við skurðpunkta $t_1,t_2$ við einingahringinn (sjá mynd 5) og táknum skurðpunktana tvo (sem eru frábrugðnirA)með

$$B = (\cos\psi_1, \sin\psi_1), C = (\cos\psi_2, \sin\psi_2).$$







Mynd 5: Tvær hliðar eru snertlar  $\Rightarrow$ þriðja hliðin einnig snertill

Þar sem AB er snertill  $e_1$  vitum við að:

$$\cos^{2}\left(\frac{\psi_{1}-\psi_{0}}{2}\right) = (a_{1}^{2}-b_{1}^{2})\cos^{2}\left(\frac{\psi_{1}+\psi_{0}}{2}\right) + b_{1}^{2}$$
(19)

(vegna hjálparsetningar 4). Eins, sú staðreynd að  $A_0C_0$  og  $B_0C_0$  eru snertlar  $e_1$  og hjálparsetning 4 leiða til

$$\cos^2\left(\frac{\psi_2 - \psi_0}{2}\right) + (a_1^2 - b_1^2)\cos^2\left(\frac{\psi_2 + \psi_0}{2}\right) = b_1^2.$$
 (20)

Við drögum þá saman allar forsendur setningu Poncelets og getum sagt að (18), (19) and (20) séu sannaðar.

Hvað þurfum við þá að sanna?

Með hjálparsetningu 4 í huga sjáum við að markmið okkar er að sýna

$$\cos^2\left(\frac{\psi_2 - \psi_1}{2}\right) = (a_1^2 - b_1^2)\cos^2\left(\frac{\psi_2 + \psi_1}{2}\right) + b_1^2.$$
(21)

Rita má þessi vensl sem

$$(1 - c^2)\cos\psi_2\cos\psi_1 = (1 + c^2)\sin\psi_2\sin\psi_1 + D,$$
(22)

 $\mathrm{þar}\,\,\mathrm{sem}$ 

$$c^{2} = a_{1}^{2} - b_{1}^{2}, D = a_{1}^{2} + b_{1}^{2} - 1.$$
(23)

samkvæmt athugasemd 1

Nú erum við loks komin í þá stöðu að við getum beitt hjálparsetningunni um hornaföll úr viðaukanum og ályktum að

$$\cos^{2}\left(\frac{\psi_{2}-\psi_{1}}{2}\right) = \frac{4c^{2}D^{2}}{(1-c^{2})^{2}(1+c^{2})^{2}}\cos^{2}\left(\frac{\psi_{2}+\psi_{1}}{2}\right) + \frac{D^{2}}{(1+c^{2})^{2}}.$$
(24)



DynaMAT

Með því að bera þessi vensl saman við (21) sjáum við að þörf er á eftirfarandi skilyrðum

$$4D^{2} = (1 - c^{2})^{2}(1 + c^{2})^{2}, D^{2} = b_{1}^{2}(1 + c^{2})^{2}$$
(25)

Þessi vensl og (23) leiða til eftirfarandi nægjanlegs skilyrðis

$$a_1 + b_1 = 1 \tag{26}$$

sem leiðir til þess að <br/>  $\bigtriangleup ABC$ er umritaður um  $e_1.$ Skilyrði<br/>ð (23) er einnig nauðsynlegt til að uppfylla eiginleikann

• til er þríhyrningur  $\triangle A_0 B_0 C_0$  umritaður um  $e_1$ .

Ef til er a.m.k. einn  $\triangle A_0 B_0 C_0$  umritaður um  $e_1$ , þá gildir (26) og þar af leiðandi er  $\triangle ABC$  umritaður um  $e_1$ .

Þar með er sönnun setningarinnar lokið.

## 4 Viðauki: Hjálparsetning um hornaföll

Hjálparsetning 5.  $G.r.f. a \delta$ 

$$\sin\left(\frac{\psi_1 - \psi_2}{2}\right) \neq 0, \ \cos\left(\frac{\psi_1 + \psi_2}{2}\right) \neq 0, \ \cos\psi_0 \neq 0$$

og

$$\begin{cases} (1-c^2)\cos\psi_1\cos\psi_0 + (1+c^2)\sin\psi_1\sin\psi_0 = D ; \\ (1-c^2)\cos\psi_2\cos\psi_0 + (1+c^2)\sin\psi_2\sin\psi_0 = D . \end{cases}$$
(27)

Þá er

$$(1 - c^2) \tan\left(\frac{\psi_1 + \psi_2}{2}\right) = (1 + c^2) \tan\psi_0 \tag{28}$$

 $og \ enn fremur$ 

$$\cos^{2}\left(\frac{\psi_{2}-\psi_{1}}{2}\right) = \frac{4c^{2}D^{2}}{(1-c^{2})^{2}(1+c^{2})^{2}}\cos^{2}\left(\frac{\psi_{2}+\psi_{1}}{2}\right) + \frac{D^{2}}{(1+c^{2})^{2}}.$$
(29)

Sönnun. Tökum mismun venslanna í jöfnu (27). Fáum

$$-(1-c^2)\sin\left(\frac{\psi_1-\psi_2}{2}\right)\sin\left(\frac{\psi_1+\psi_2}{2}\right)\cos\psi_0+(1+c^2)\sin\left(\frac{\psi_1-\psi_2}{2}\right)\cos\left(\frac{\psi_1+\psi_2}{2}\right)\sin\psi_0=0.$$
 For sondar

Forsendan

$$\sin\left(\frac{\psi_1 - \psi_2}{2}\right) \neq 0$$

leiðir til þess að

$$(1-c^2)\sin\left(\frac{\psi_1+\psi_2}{2}\right)\cos\psi_0 = (1+c^2)\cos\left(\frac{\psi_1+\psi_2}{2}\right)\sin\psi_0.$$

Þetta sannar (28). Leiða má út hin venslin með því að framkvæma eftirfarandi áætlun

• fyrsta jafnan í (27) × sin  $\psi_2$  – önnur jafnan í (27) × sin  $\psi_1$ ;



Dyna MAT

• fyrsta jafnan í (27) ×  $\cos \psi_2$  – önnur jafnan í (27) ×  $\cos \psi_1$ .

Á þennan hátt fáum við

$$2D\sin\left(\frac{\psi_2 - \psi_1}{2}\right)\cos\left(\frac{\psi_2 + \psi_1}{2}\right) = 2(1 - c^2)\sin\left(\frac{\psi_2 - \psi_1}{2}\right)\cos\left(\frac{\psi_2 - \psi_1}{2}\right)\cos\psi_0,$$
$$-2D\sin\left(\frac{\psi_2 - \psi_1}{2}\right)\sin\left(\frac{\psi_2 + \psi_1}{2}\right) = -2(1 + c^2)\sin\left(\frac{\psi_2 - \psi_1}{2}\right)\cos\left(\frac{\psi_2 - \psi_1}{2}\right)\sin\psi_0,$$
neð því sð nota forsendung

svo með því að nota forsenduna

$$\sin\left(\frac{\psi_1 - \psi_2}{2}\right) \neq 0$$

fáum við

$$\frac{D}{1-c^2}\cos\left(\frac{\psi_2+\psi_1}{2}\right) = \cos\left(\frac{\psi_2-\psi_1}{2}\right)\cos\psi_0,$$
$$\frac{D}{1+c^2}\sin\left(\frac{\psi_2+\psi_1}{2}\right) = \cos\left(\frac{\psi_2-\psi_1}{2}\right)\sin\psi_0.$$

Með því að taka summu þessara samsemda í öðru veldi fáum við

$$\frac{D^2}{(1-c^2)^2}\cos^2\left(\frac{\psi_2+\psi_1}{2}\right) + \frac{D^2}{(1+c^2)^2}\sin^2\left(\frac{\psi_2+\psi_1}{2}\right) = \cos^2\left(\frac{\psi_2-\psi_1}{2}\right)$$

og þessi jafna gefur (29)

Þar með lýkur sönnun hjálparsetningarinnar.

#### Heimildir

- H. J. M. Bos, C. Kers, F. Oort, and D. W. Raven, *Poncelet's closure theorem*, Expo. Math. 5 (1987), 289 – 364.
- [2] A. Cayley, Note on the porism of the in-and-circumscribed polygon, Philosophical magazine 6 (1853), 99-102.
- [3] A. Cayley, Developments on the porism of the in-and-circumscribed polygon, Philosophical magazine 7 (1854), 339-345.
- [4] H. Dörrie, 100 great problems in Mathematics. Their history and solutions, Dover Publ., New York, (1965).
- [5] V. Dragovic, M. Radnovic *Poncelet Porisms and Beyond*, Birkhäuser, Springer-Basel, (2011).
- [6] L.Flatto, Poncelet's Theorem, AMS, (2008).
- [7] J. V. Poncelet, Traite sur les Proprietes des Figures, Paris, (1822).
- [8] S.Tabachnikov, Geometry and Billiards, Students Mathematica Library, (2005)