

Dyna MAT

Obvod harmonických trojuholníkov v elipse

Vladimír Georgiev, Veneta Nedyalkova
 Slovenská verzia: Gabriela Galliková, Dušan Vallo

1 Úvod

.

Pokračujeme v našom štúdiu niektorých vlastností periodických trojuholníkov na biliardoch na základe poznatkov uvedených na strane $170 \text{ v } [1]$: $\sum_{i=1}^n$ making light visible. To show the path of light in materials, $\sum_{i=1}^n$

"Hľadajme trojuholník maximálneho obsahu, ktorý je vpísaný do *C*, kde *C* je nejaká krivka v rovine. Zrejme existuje najmenej jeden taký trojuholník s nedegenerovanou stranou dĺžky 0. Dotyčnica ku krivke C v ľubovoľnom vrchole tohto trojuholníka zviera so stranami trojuholníka (incidentnými s týmto vrcholom) rovnaké uhly. Povieme, že trojuholník je harmonický, ak odpovedá dvom rôznym pohybom. ¹ Ak meníme polohu vrcholov trojuholníka na krivke spojito pri fixovanom poradí jeho vrcholov a znižujeme pritom hodnotu jeho obvodu na minimum, objavíme druhý harmonický trojuholník zodpovedajúci opäť dvom periodickým pohybom." ijme trojunolnik maximalneno obsanu, ktory je vpisany do C , kde C je nejaka krivka simulation, the pedagogic value is not quite the same), but *complementing* it. It can as well be useful

2 Príklady konkrétnych harmonických trojuholníkov

Uvedieme najjednoduchší prípad pre elipsu $\frac{1}{2}$ reaches the other surface of the angle in $\frac{1}{2}$

$$
e: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1
$$
 (1)

a vezmeme bod $A_0 \in e$ na *y*-ovej osi, kde $A_0(0,b)$ (obr. 1). eme bod $A_0 \in e$ na y-ovej osi, kde $A_0(0,b)$ (obr. 1).

Podľa Birkhoffovej koštrukcie ([1]) môžeme zostrojiť trojuholník $\Delta A_0 A_1 A_2$ s maximálnym obvodom, ktorý je vpísaný do elipsy *e*. BUT EVEN FOR THE DESIGN FOR THE DESIGNATION $\Delta A_0A_1A_2$ is that

Obrázok 1: Harmonický trojuholník s A_0 (0, *b*).

V [5] sú odvodené vyjadrenia pre súradnice bodov $A_1(x, y)$, $A_2(-x,y)$. Podľa tvrdenia vety 1 v [5] je zrejmé, že ak je ∆ *A*₀*A*₁*A*₂ periodický, potom je opísaný konfokálnej elipse *e1* s rovnicou

$$
e_1: \frac{x^2}{a_1^2} + \frac{y^2}{b_1^2} = 1
$$
 (2)

¹ Poznámka prekladateľa: treba si uvedomiť, že uvažujeme o trojuholníku, teda jeho hranica je uzavretá lomená čiara. Ak zvolíme na krivke *C* bod *A*0 ľubovoľne a zostrojíme dotyčnice ku elipse 1 *e* , nemáme zaručené, že strana A_1A_2 bude dotyčnicou ku e₁. Keďže vrcholy trojuholníka sú rovnocenné, môžeme začať ktorýmkoľvek, preto rozlišujeme dva "pohyby". Pohybom sa rozumie fixované poradie vrcholov: trojuholník $A_0A_1A_2$ alebo trojuholník $A_0A_2A_1$.

Dyna MAT

Rovnica (1) v [5] udáva podmienku pre konfokálnosť elíps *e* a *e*₁, t.j. takých elíps, ktorých ohniská *F*₁
0. E. sú totožné. Po úprave je podmienka v tvore a *F*2 sú totožné. Po úprave je podmienka v tvare

$$
a^2 - b^2 = a_1^2 - b_1^2 \tag{3}
$$

Budeme predpokladať, že e_1 je vo vnútri e_1 a platí

$$
a > b > 0, a1 > b1 > 0, a > a1, b > b1
$$

Pripomeňme si niektoré z výsledkov v [5]. $\sum_{i=1}^{\infty}$

Lema 1. *(*pozri [5]) *Nech je daná elipsa* 2 2 $1 \cdot \overline{a^2} + \overline{b^2}$ v_1 v_1 e_1 : $\frac{x^2}{2} + \frac{y^2}{12} = 1$ a_1^2 *b* **1**. (pozri [5]) Nech je daná elipsa $e_1: \frac{x^2}{2} + \frac{y^2}{2} = 1$. Nutná a postačujúca podmienka, aby **I.** (pozri [5]) Nech je dana elipsa $e_1: -\frac{1}{2} + \frac{1}{12} = 1$. Nutna a postacujuca podmienka, $a_1 \quad o_1$

priamka $y = kx + b$ prechádzajúca bodom $A_0 \big(0, b \big)$ bola dotyčnicou ku e_1 je $\alpha_y = \alpha_x + b$ prechangual bourm $\alpha_0(0, b)$ bold doly encoderate them.

$$
k^2 = \pm \frac{b^2 - b_1^2}{a_1^2}
$$

Lema 2. *(*pozri [5]) *Nech je daná elipsa* 2 $\sqrt{2}$ $1 \cdot \frac{2}{a^2} + \frac{1}{b^2}$ v_1 v_1 $e_1: \frac{x^2}{2} + \frac{y^2}{12} = 1$ a_1^2 *b* $+\frac{y}{l^2}$ = 1 a bod $A_0(0,b)$. Ak označíme t_1, t_2 dotyčnice $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ **2** (pozri [5]) Nech je daná elipsa $e : \frac{x}{z} + \frac{y}{z} = 1$ a hod A, $(0, h)$ Ak označíme t. t. light hits the glass surface of an optical lens, a part of it gets reflected back in a certain angle, and and continues the glass and continues the glass and continues the same happens when the s

*z bodu A*0 *ku* 1 *e a priesečníky* 1 2 *A A*, *týchto dotyčníc s elipsou* $e: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ a^2 *b* $+\frac{y}{2} = 1$ *, kde* $A_1(x, y)$ *,* $x < 0$ *,* $A_2(-x, y)$, potom platí χ^2 , χ^2 , χ^2 , again mathematics is required to calculate the angle in ang \mathcal{A}_{eq} is reflected and reflected. For ideal lenses, there is an easy equation calculating these is an easy equation calculating the set of \mathcal{A}_{eq} ^o ku e_l a priesecniky A_1, A_2 tychto dotycnic s elipsou $\qquad \qquad u$ $\qquad \qquad$ \qquad , kde $A_1(x, y)$, $\left(x, y\right)$, potom plati

$$
x = \frac{2a^2a_1b\sqrt{b^2 - b_1^2}}{a_1^2b^2 + a^2(b^2 - b_1^2)} = -\frac{2bka^2}{b^2 + a^2k^2},
$$

$$
y = -M, \quad M = \frac{a^2b(b^2 - b_1^2)}{a_1^2b^2 + a^2(b^2 - b_1^2)} = \frac{b(b^2 - a^2k^2)}{b^2 + a^2k^2}.
$$

Zo vzťahu $M = b_1$ a konfokálnosti *e* a e_1 vieme odvodiť a_1, b_1 .

Lema 3. Nech je d*aná elipsa* 2 $\sqrt{2}$ $1 \cdot \frac{2}{a^2} + \frac{1}{b^2}$ v_1 v_1 $e_1: \frac{x^2}{2} + \frac{y^2}{12} = 1$ a_1^2 *b* $+\frac{y}{l^2}$ = 1, *bod* $A_0(0,b)$ a nech $A_1(x_1, y_1)$, x_1 < 0, $A_2(x_2, y_2)$,

2 *x* 0 *sú body určené v leme 2*. *Potom A*1*A*² *je dotyčnica k e*1, *vtedy a len vtedy, keď*

$$
a_1 = \frac{a(\sqrt{a^4 - a^2b^2 + b^4} - b^2)}{a^2 - b^2},
$$

$$
b_1 = \frac{b(a^2 - \sqrt{a^4 - a^2b^2 + b^4})}{a^2 - b^2}.
$$

 $D\hat{o}kaz$. Vzťah $M = b_1$ je ekvivalentný s $(2, 2, 3)$

$$
\frac{b(b^2 - a^2k^2)}{b^2 + a^2k^2} = b_1
$$

Úpravou

$$
b^2(b - b_1) - a^2k^2(b + b_1),
$$

kde pomocou Lemy 1 dostaneme

$$
b^{2}(b - b_{1}) - \frac{a^{2}(b - b_{1})(b + b_{1})^{2}}{a_{1}^{2}} = 0.
$$

Z $b \neq b_1$ zjednodušíme **1 Introduction**

$$
b^2 - \frac{a^2(b+b_1)^2}{a_1^2} = 0
$$

alebo

$$
a_1^2 b^2 = a^2 (b + b_1)^2
$$

a to znamená, že α amena, \dot{z}

 $a_1b = a(b + b_1).$

Z uvedeného vzťahu a z podmienky $a^2 - b^2 = a_1^2 - b_1^2$ odvodíme systém dvoch rovníc reflection and $a^2 - b^2 = a^2 - b^2$ in the actual experiment (if one sees experiments on $a^2 - b^2 = a^2 - b^2$ eneho vztahu a z podmienky interesting interesting the system dvoch rovnic

$$
\begin{cases}\n a_1 b = a(b + b_1), \\
 a_1^2 - b_1^2 = a^2 - b^2.\n\end{cases} (4)
$$

Tento systém má jediné riešenie pre $a_1>0$; $b_1>0$ v tvare \mathbf{b} is just a model, and it does work with this lenses and with thin lenses and with light falling in lenses and with \mathbf{b}

$$
a_1 = \frac{a(\sqrt{a^4 - a^2b^2 + b^4} - b^2)}{a^2 - b^2},
$$

$$
b_1 = \frac{b(a^2 - \sqrt{a^4 - a^2b^2 + b^4})}{a^2 - b^2}.
$$

Tým je dôkaz lemy ukončený. **2.1 Reflection** When a ray of light hits a plane glass surface, a part of it is reflected. The *law of reflection* says that

Ak položíme the angle of incidence (between the ray of light and the *normal*) is equal to the angle of reflection:

$$
s = \frac{b}{a} \in (0, 1). \tag{5}
$$

potom pre *a*1*; b*1 dostaneme vzorce

$$
a_1 = a \frac{(\sqrt{1 - s^2 + s^4} - s^2)}{1 - s^2},
$$

$$
b_1 = b \frac{(1 - \sqrt{1 - s^2 + s^4})}{1 - s^2}.
$$

Necháme na čitateľa, aby uvažoval prípad zámeny polohy bodu A_0 voľbou $A_0(a,0)$ (obr. 2).

Cvičenie 1. *Nech je daná elipsa* 2 \ldots ² $1 \cdot \frac{2}{a^2} + \frac{1}{b^2}$ ν_1 ν_1 e_1 : $\frac{x^2}{2} + \frac{y^2}{12} = 1$ a_1^2 *b* $e_1: \frac{x^2}{2} + \frac{y^2}{2} = 1$. Nutná a postačujúca podmienka, aby priamka y = kx – ka $\;$ prechádzajúca bodom $\;A_{0}\big(a,0\big)$ bola dotyčnicou ku elipse e₁ je $S = ka$ prechádzajúca bodom $A_0(a, 0)$ bola dotyčnicou ku elipse e_l je
 $k^2 = \pm \frac{b^2 - b_1^2}{a^2}$ $-ka$ and α is publication reflection reflection reflects the views only of the authors, and the aut C^{∞} prechadzajuca bodom $A_0(d,0)$ bola dotycnicou ku elipse e₁ je

$$
k^2 = \pm \frac{b^2 - b_1^2}{a_1^2}
$$

Dyna MAT

Cvičenie 2. *Nech je daná elipsa* 2 $\sqrt{2}$ $1 \cdot \frac{2}{a^2} + \frac{1}{b^2}$ v_1 v_1 e_1 : $\frac{x^2}{2} + \frac{y^2}{2} = 1$ a_1^2 *b* ie 2. Nech je daná elipsa $e_1: \frac{x}{a_1^2} + \frac{y}{b_1^2} = 1$ a bod $A_0(a,0)$. Ak označíme $t_1 t_2$ dotyčnice z bodu

A0 ku elipse e1 a body A1, A² sú priesečníky týchto dotyčníc s elipsou $e: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ a^2 *b* $+\frac{y}{12}=1$ *, kde* $A_1(x, y)$ *,* $x < 0$, $A_2(x, -y)$, potom platí lipse e₁ a body A₁,

$$
x = -\frac{2a(k^2 - b^2)}{b^2 + a^2k^2},
$$

$$
y = \frac{2ab_2k}{b^2 + a^2k^2}.
$$

Obrázok 2: Harmonický trojuholník s A_0 (a, 0)

Cvičenie 3 si môže čitateľ dokázať sám podľa dôkazu lemy 3.

Cvičenie 3. Nech je d*aná elipsa* 2 $\sqrt{2}$ $1 \cdot \frac{2}{a^2} + \frac{1}{b^2}$ 1 v_1 e_1 : $\frac{x^2}{2} + \frac{y^2}{12} = 1$ a_1^2 *b* $+\frac{y}{l^2}$ = 1 *bod* A_0 (0, *b*) a *nech* body $A_1(x_1, y_1)$, x_1 < 0,

 $A_2(x_2, y_2)$, $x_2 > 0$ sú bodmi určenými v leme 2. Potom A_1A_2 je dotyčnica k e_1 , vtedy a len vtedy, keď

$$
a_1 = \frac{a(\sqrt{a^4 - a^2b^2 + b^4} - b^2)}{a^2 - b^2},
$$

$$
b_1 = \frac{b(a^2 - \sqrt{a^4 - a^2b^2 + b^4})}{a^2 - b^2}.
$$

3 Obvod konkrétnych harmonických trojuholníkov $b_1 = \frac{b(a^2 - \sqrt{a^4 - a^2b^2 + b^4})}{a^2 - b^2}.$
 Nod konkrétnych harmonických trojuholníkov

me najjednoduchší prípad elipsy
 $e: \frac{x^2}{a^2 + \frac{y^2}{a^2}} = 1$

Uvažujme najjednoduchší prípad elipsy

$$
e: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1
$$

a bod $A_0 \in e$ ležiaci na osi *y*, t.j. A_0 (0, *b*) (obr. 1). Pre súradnice bodov A_1 (*x*, *y*), A_2 (-*x*, *y*) máme vzorce v tvare **Modelling optical lenses with Dynamic Geometry Software**

$$
x = -\frac{2bka^2}{b^2 + a^2k^2},
$$

$$
y = -M, \quad M = \frac{b(b^2 - a^2k^2)}{b^2 + a^2k^2},
$$

odvodené v leme 2. Obvod trojuholníka $\Delta A_0 A_1 A_2$ je

$$
P_1 = 2\sqrt{x^2 + (y - b)^2} + 2|x| =
$$

=
$$
\frac{4a^2b|k|\sqrt{k^2 + 1}}{b^2 + a^2k^2} + \frac{4b|k|a^2}{b^2 + a^2k^2}.
$$

Aj lemu 1 môžeme použiť na výpočet obvodu P_1 , ako aj k dôkazu nasledujúcej lemy 4. **Lema 4**. Nech je d*aná elipsa* 2 $\sqrt{2}$ $1 \cdot 2 \cdot 12^2$ v_1 v_1 e_1 : $\frac{x^2}{2} + \frac{y^2}{12} = 1$ a_1^2 *b* $+\frac{y}{l} = 1$, *bod* A_0 (0, *b*) a nech body A_1 (*x*₁, *y*₁), *x*₁ < 0, A_2 (*x*₂, y2), x_2 > 0 sú bodmi určenými v leme 2. Pre obvod P₁ trojuholníka $\Delta A_0 A_1 A_2$ platí $\frac{1}{2}$ another part penetrates the glass and $\frac{y}{z-1}$ begins and continues there are same happens when the same for $\frac{y}{z-1}$ **F**. EVER jet that exponent c_1^2 , $a_2^2 + b_2^2 = 1$, both α_0^2 to calculate the angle α_1 , y_1 , $x_1 \propto x_1$ \sim 0 su bodmi určenými v leme 2. Pre obvod P₁ trojuholníka $\Delta A_0A_1A_2$ platí

$$
P_1 = \frac{4a^2b(a+a_1)\sqrt{a^2 - a_1^2}}{b^2a_1^2 + a^2(a^2 - a_1^2)}.
$$

Ak uvažujeme o bode A_0 na *x* –ovej osi , t.j. A_0 (*a*, 0), dokážeme nasledovné

Lema 5. Nech je d*aná elipsa* 2 $\sqrt{2}$ $1 \cdot 2 \cdot 12^2$ v_1 v_1 e_1 : $\frac{x^2}{2} + \frac{y^2}{12} = 1$ a_1^2 *b* **5**. Nech je daná elipsa $e_1: \frac{x^2}{2} + \frac{y^2}{12} = 1$, bod $A_0(0, b)$ a nech $A_1(x_1, y_1), x_1 < 0$, a_1^2 is a_1^2 is reflected. The *law of reflection* samples surface, a part of *law* of *l*

 $A_2(x_2, y_2)$, x_2 > 0 sú bodmi určenými v leme 2. Pre obvod P₂ trojuholníka $\Delta A_0 A_1 A_2$ platí

$$
P_2 = \frac{4ab^2(b+b_1)\sqrt{a^2 - a_1^2}}{b_1^2a^2 + b^2(a^2 - a_1^2)}.
$$

Cvičenie 4. Dokážte, že pre obsahy platí : $S_1 = S_2$

Návod. Určte súradnice vrcholov trojuholníkov.

Literatúra

[1] G D. Birkhoff, *Dynamical systems*, AMS, Coll. Publ. Vol. 9, Revised edition (1966).

[2] A. Cayley, *Note on the porism of the in-and-circumscribed polygon*, Philosophical magazine **6** (1853), 99102. $\frac{1}{2}$ $\frac{99102}{2}$

² (2000), *The Latticum Comentium of the in-and-circumscribed polygon*, Philosophical (3) A. Cayley, *Developments on the porism of the in-and-circumscribed polygon*, Philosophical magazine **7** (1854), 339345. Layley, *Developments on the portsm of the in-ana-ctricumscribed potygon*, Filliosop

[4] V. Dragovic, M. Radnovic, *Poncelet Porisms and Beyond*, Birkhauser, Springer-Basel, 2011.

[5] V.Georgiev, I.Georgieva, V.Nedyalkova, *Dynamical billiards*, article in this book.

[6] V.Georgiev, V.Nedyalkova, *Poncelet's porism and periodic triangles in ellipse*, article in this book.

[7] S.Tabachnikov, *Geometry and Billiards*, Students Mathematica Library, (2005)