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When You Simply Decide to Dream... 

Kaloyan Bukovski, student at the University of Edinburgh, Scotland, UK  

 Anton Belev, student at the –University of Glasgow, Scotland, UK  

This is a story about mathematics, but not about the one in the textbooks which is so stale that it is 

almost identical to what you could find in a textbook from the 1960s. This is a story about the other 

one – the beautiful, limitless, full of life and art, as well as science; the one that allows you to dream, 

to experience wonderful moments, to feel the dynamics. 

Geometry has always been and will continue to be the part of science which gives the best basis for 

defining infinity, precisely because in the geometric constructions and configurations this otherwise 

strong notion actually remains an elusive riddle. Questions like „What if…“ and „What if not…“ are 

the key to the limitless. And when we add some simple additional adornments like "But", "However", 

"Nevertheless", etc., to our geometric research, we arrive at utter chaos, the thoughts start jumping one 

over the other, the mathematician becomes a dreamer. 

The story begins like this –two boys, participants in a summer school in mathematics, decide to "dive" 

into the infinity of a particular direction of geometry. The topic is related to the notion of isogonal 

conjugates, its applications, and its relation to famous geometric compositions. 

The initial idea of our adviser, who posed the problem to us, was to synthesize widely known results in 

the area and unify them into a logically linked sequence. We did this, but it wasn't that easy to stop 

there. There were just a few essential theoretical facts and definitions, the main ones of which are 

listed below: 

Definition 1 

Given a △ABC and a point M in its plane, let Ma, Mb and Mc  be the reflections of M with respect to 

the angle bisectors at A, B, and C respectively. Then AMa, BMb and CMc are the isogonal conjugate 

lines of AM, BM and CM respectively. They concur at a point N, called the isogonal conjugate of 

point M. 
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1 Introduction 
In optics when it comes down to show the path of rays of light through glass, lenses or systems of 
lenses, many physics teachers groan – the experiments are quite complex, and you need a lot of 
equipment. It is difficult enough to show a ray of light in air – you need smoke, dust or any other way 
of making light visible. To show the path of light in materials, you need special equipment – smoke 
glass lenses etc. Now that’s not always available, and adjustments to the system can usually only be 
done by removing one piece and putting another piece in. To see what happens if you make a lens 
thicker, you have to take out the current lens and put in the new one. Students can then observe the 
situation before the change and after the change – but it is not exactly a gradual change that lets them 
observe how the path of light actually changes. We want to demonstrate how you can show the path of 
light through a lens with the help of dynamic geometry software (DGS). 

This material can be useful for science teachers, who can use it to model experiments with lenses, 
reflection and refraction – not instead of the actual experiment (if one sees experiments only in 
simulation, the pedagogic value is not quite the same), but complementing it. It can as well be useful 
for mathematics teachers. Well, now where is the mathematics? There is a lot of it in there! If a ray of 
light hits the glass surface of an optical lens, a part of it gets reflected back in a certain angle, and 
another part penetrates the glass and continues there, in another angle. The same happens when the 
light reaches the other surface of the lens – again mathematics is required to calculate the angle in 
which the light is reflected and refracted. For ideal lenses, there is an easy equation calculating these 
effects – but this is just a model, and it does work well only with thin lenses and with light falling in 
near the centre of the lens. With thicker lenses and light being more off-centre, the calculations 
become more complex, and from the equations alone it would be difficult to see what happens. With 
DGS it is possible to simulate the properties of a lens without actually having to use a lens, laser light, 
etc. But even for the DGS, we need mathematics to create the simulation in the first place. 

2 Easy beginnings – light hits a plane surface 
2.1 Reflection 
When a ray of light hits a plane glass surface, a part of it is reflected. The law of reflection says that 
the angle of incidence (between the ray of light and the normal) is equal to the angle of reflection: 

 
Fig.1 Reflection of light at a plane surface. 



Definition 2 

For a ΔABC and an arbitrary point X in its plane, let Xa, Xb and Xc be the orthogonal projections of 

X onto BC, CA and AB. Then, the ΔXaXbXc is called the pedal triangle of X for ΔABC. 

 
We explored relationships between various elements of the pedal triangles of two isogonally conjugate 

points. Studying the theory of isogonal conjugates "in depth" was interesting, but we felt we were 

lacking something in order to feel truly satisfied. Graphing and combining already known 

configurations and expressing their properties was exciting, but insufficient. We wanted to find 

something new.  

After the summer school we followed our mentor's advice not to deal with too wide a theory, but 

rather concentrate on something concrete. But what could it be? Tens of mathematicians around the 

world had worked on discovering various properties of geometric constructions in this area and it 

would definitely not have been very effective for us to walk on the well trodden path. Therefore, we 

decided to look at the problem "from a different angle", to choose a different plane (as one would say 

if one were to use the stereometric language). 

Above all, we need to acknowledge one of the most important elements of the work presented herein - 

the dynamic software. In this case the well known plane geometry software GeoGebra [1] was very 

appropriate to use. The contribution of GeoGebra, however, is certainly not restricted to the nicely 

graphed constructions, or the accessibility of the complex and crowded configurations. The main tool 

we used, which was very effective, was the fact that GeoGebra allows one to define functions 

combining a sequence of frequently repeated operations. We created a button which upon clicking it, 

would instantly create the isogonal conjugate of a given point for a given triangle. This is a simple 

construction, but it involves 7 different geometric constructions. For example, we were interested in 

constructing the isogonal conjugates of a fixed point with respect to 12 triangles. A simple calculation 

shows that it would have been terribly disheartening and ineffective to do this on a piece of paper, 

especially when everything is based on an idea or a hypothesis. 

From our past research, we had substantial experience with dynamic studies of quadrilaterals 

circumscribed around a circle, conic sections (in particular ellipses), etc. –But what could we do by 

taking a quadrilateral circumscribed around a circle? Of course, it made sense to consider the triangles 

formed by the given points. Namely, we would form four triples of points using permutation. So far it 

was clear we would construct isogonally conjugate points with respect to these four triangles. But the 
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Fig.1 Reflection of light at a plane surface. 



question arises - conjugates of which point? Clearly the condition of the inscribed circle comes into 

play here. Of course, the first element associated with this incircle that comes to mind is its center... 

We started in this way, almost as a joke, but the result was impressive. The four points formed a 

parallelogram! 

 

Conjecture 1 

ABCD is a quadrilateral circumscribed about a circle centered at O. Let the points A1, B1, C1, D1   be 

the isogonally conjugate points of O with respect to ΔDAB, ΔABC, ΔBCD, ΔCDA, respectively. Then 

the quadrilateral A1B1C1D1 is a parallelogram. 

One would wonder why exactly a parallelogram is formed and what is the reason an arbitrary 

quadrilateral satisfying a single condition (that it is circumscribed about a circle), would yield such a 

special geometric figure after applying the "isogonal conjugacy" button a few times. The answer was 

also to appear in other similar questions. In fact, the reason for this "beautiful" result was the fact that 

under isogonal conjugacy, everything contains an underlying symmetry. Intrinsically connected to this 

problem are the particular cases of a rhombus, square, etc., for which one needs to impose additional 

conditions.  

Certainly, one could enter the area of observations and hypotheses (and later their rigorous proofs) 

lead by meticulous logic. This is the way we tried to proceed. The next step was to get a generalized 

version of the already considered configuration. What could make more sense than substituting an 

ellipse for the circle and repeating the construction... However, in this case the center of the circle 

corresponds to the two foci. Then, we constructed the corresponding two quadrilaterals, using the 

algorithm described above. The result? What we obtained in this way were not parallelograms but two 

arbitrary quadrilaterals, which, however, were ... congruent! 
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Fig.1 Reflection of light at a plane surface. 



 

Conjecture 2 

Let ABCD be a quadrilateral circumscribed about an ellipse with foci F1 and F2. Denote by A1, B1, C1, 

D1 and A2, B2, C2, D2 the isogonally conjugate points of  F1 and F2 with respect to ΔDAB, ΔABC, 

ΔBCD and ΔCDA. Then, the quadrilaterals A1B1C1D1 and A2B2C2D2 are congruent. 

This conjecture was shortly accompanied by a theoretical proof. It would probably make an 

impression on every reader not so much with the methods used, but rather, with the complex 

geometric constructions, that made us stare at them for days before we discovered what was in front of 

our eyes all along. These moments, however, are what draws one to do research in geometry. 

 

After establishing such interesting properties coming from applying "isogonal conjugacy" to two basic 

configurations, it occurred to us to slightly modify the initial conditions. The goal was to again 

consider a quadrilateral, but without imposing any conditions. The point to be conjugated was 
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Fig.1 Reflection of light at a plane surface. 



arbitrary, and the triangles with respect to which it was to be conjugated were formed by two vertices 

and the intersection point of the diagonals, rather than triples of vertices. This procedure would yield 

four triangles, and consequently, four isogonally conjugate points. It turned out that this did not yield a 

quadrilateral, simply because the points obtained (by applying the "isogonal conjugacy" button) were 

collinear. Moreover, it turned out that the line containing them passes through the intersection point of 

the diagonals... 

Following this way of thinking, we were lead to consider an analogous construction based on the so 

called "complete quadrangle", which in fact has six vertices and three diagonals. These three diagonals 

yield respectively three intersection points, one of which we had already considered. We expected that 

the other two, given the proper choice of quadruples of vertices out of the six, would also yield two 

lines containing five points. Well, symmetry had a say in this as well. Everything turned out to be 

exactly the way we expected. 

Conjecture 3 

Let ABCDPQ be a complete quadrangle and let AC∩BD = E, AC ∩PQ = R, BD∩PQ = T be the 

intersection points of its diagonals. For an arbitrary point I in the plane denote by E1, E2, E3, E4  the 

isogonally conjugate points of I with respect to ΔABE, ΔBCE, ΔCDE and ΔDAE. Let R1, R2, R3, R4 be 

the isogonally conjugate points of I with respect to △APR, △PCR, △CQR and △QAR, and T1, T2, T3, T4 

be the isogonally conjugate points of I with respect to △BPT, △PDT, △DQT and △QBT. Then the points (E, E1, 

E2, E3, E4), (R, R1, R2, R3, R4) and (T, T1, T2, T3, T4) are collinear and these three lines concur at a point 

isogonally conjugate to I with respect to △ERT. 

 

We didn't expect one thing, though, the final part of the theorem, possibly the strongest result about 

this construction. The essential thing here is that the three lines determined above intersect at one 

point. Moreover, the intersection point is not an arbitrary one. By simply constructing its isogonally 

conjugate point with respect to the triangle with vertices the three intersection points of the diagonals, 
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Fig.1 Reflection of light at a plane surface. 



we arrived at a conclusion exceeding our wildest expectations. The constructed point turned out to be 

the point we started at – the arbitrarily chosen and then fixed point in the plane of △ABC… 

This was not difficult to prove, but it was clear that the reasoning in the opposite direction would have 

been possible only given great luck. 

Starting from a simple configuration, we developed the idea by changing some of the parameters and 

concluded by arriving at the closure of a frame, which lead us to believe that this type of improvisation 

has been exhausted. However, based on these achievements, we knew we had to continue ahead.  

At one point our adviser noted something which was bound to lay the foundation of the biggest results 

in the research that followed. His note was both simple and elegant due to the sound logical argument 

it was based on. It was true we had derived wonderful properties using quadrilaterals, but why did we 

neglect to consider configurations based on triangles?... 

Many experiments followed, as well as various kinds of substitutions and other approaches, until we 

finally figured out the fundamental construction. It was... a triangle and a point lying on its 

circumcircle. Clearly, we were to construct points isogonally conjugate to this point with respect to 

certain triangles. All that was left to do was to determine the triangles with respect to which we were 

to apply the isogonal conjugacy, analogously to the approach taken in our previous studies. We needed 

one more point X, which together with the three permutation pairs of the fundamental triangle would 

form the needed configuration – a point and three triangles. Naturally, before figuring out a more 

general dependency under less restricting conditions, we decided to choose X to coincide with the 

center of the circumcircle... 

Definition 3 

Let P be a point on the circumscribed circle of a ΔABC and X be a point in its plane. An isogonal 

triangle of P, centered at X, is the triangle determined by the isogonal conjugates of P with respect to 

the triangles ABX, BCX, and ACX. 

 

And then came the moment when our substantial literature review, which filled our heads with 

thousands of properties and relations, yielded a relation which subsequently directed us in our search 

for a result.  In many places we encountered the proposition that for a given triangle and a point in its 

plane, the pedal and the Cevian triangles are similar. During the Summer school of the High School 

Institute of Mathematics and Informatics (HSSI) [2] we studied the properties of pedal triangles of 

isogonally conjugate points anyway, so we decided that it makes sense to include this component in 

our research. It turned out we were right.  

   

This project has been funded with support from the European Commission in its Lifelong Learning Programme 
(510028-LLP-1-2010-1-IT-COMENIUS-CMP). This publication reflects the views only of the authors, and the 
Commission cannot be held responsible for any use which may be made of the information contained therein. 
 

Modelling optical lenses with Dynamic Geometry Software 
Andreas Ulovec 

1 Introduction 
In optics when it comes down to show the path of rays of light through glass, lenses or systems of 
lenses, many physics teachers groan – the experiments are quite complex, and you need a lot of 
equipment. It is difficult enough to show a ray of light in air – you need smoke, dust or any other way 
of making light visible. To show the path of light in materials, you need special equipment – smoke 
glass lenses etc. Now that’s not always available, and adjustments to the system can usually only be 
done by removing one piece and putting another piece in. To see what happens if you make a lens 
thicker, you have to take out the current lens and put in the new one. Students can then observe the 
situation before the change and after the change – but it is not exactly a gradual change that lets them 
observe how the path of light actually changes. We want to demonstrate how you can show the path of 
light through a lens with the help of dynamic geometry software (DGS). 

This material can be useful for science teachers, who can use it to model experiments with lenses, 
reflection and refraction – not instead of the actual experiment (if one sees experiments only in 
simulation, the pedagogic value is not quite the same), but complementing it. It can as well be useful 
for mathematics teachers. Well, now where is the mathematics? There is a lot of it in there! If a ray of 
light hits the glass surface of an optical lens, a part of it gets reflected back in a certain angle, and 
another part penetrates the glass and continues there, in another angle. The same happens when the 
light reaches the other surface of the lens – again mathematics is required to calculate the angle in 
which the light is reflected and refracted. For ideal lenses, there is an easy equation calculating these 
effects – but this is just a model, and it does work well only with thin lenses and with light falling in 
near the centre of the lens. With thicker lenses and light being more off-centre, the calculations 
become more complex, and from the equations alone it would be difficult to see what happens. With 
DGS it is possible to simulate the properties of a lens without actually having to use a lens, laser light, 
etc. But even for the DGS, we need mathematics to create the simulation in the first place. 

2 Easy beginnings – light hits a plane surface 
2.1 Reflection 
When a ray of light hits a plane glass surface, a part of it is reflected. The law of reflection says that 
the angle of incidence (between the ray of light and the normal) is equal to the angle of reflection: 

 
Fig.1 Reflection of light at a plane surface. 



What came out of this? A corollary to a lemma proven by us shows that the three new points, which 

we later came to call "isogonal triangle" lie on the circle.  Moreover, the new triangle was similar to 

the initial triangle!  Due to the fact that they have the same circumcircle, it turned out they are in fact 

congruent! We didn't feel this was a coincidence, rather, it was clear to us that this particular case 

somewhat enhances the "extraordinary nature" of the result obtained. 

 

We needed to substitute the center of the circumcircle by a different point. We chose the center of the 

incircle as an analogue in this case. This time there was no congruence, and only part of the previously 

existing similarity remained. In fact, we hadn't thought of the fact that the Cevian triangle (and 

respectively the pedal triangle) of the circumcenter of a given triangle, are in fact similar to this 

triangle, and therefore are also similar to the isogonal triangle in this particular case. It turned out, in 

fact, that the latter was true not only for this case. We were now ready to use the software's capabilities 

to note the following significant property. Given an arbitrary point X in the plane of a given triangle, 

its isogonal triangle with respect to an arbitrary point on the circumcircle is similar to the pedal 

triangle, and respectively, to the Cevian triangle with respect to X. At last, we had taken the crucial 

step – we had a stand-alone proposition.  We initially called it Main Hypothesis, and it eventually 

turned into the following: 

Main Theorem: 

Let X be a point in the plane of a △ABC. Then for every point P on the circumcircle of △ABC, the 

isogonal triangle of P centered at X is similar to the Cevian and the pedal triangles of the point X with 

respect to the △ABC. 
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Fig.1 Reflection of light at a plane surface. 



It turned out that the proof wasn't easy at all. Breaking the process apart into small steps that followed 

the logical evolution from particular cases to the general theorem allowed us to gradually develop 

small ideas, expressed in four lemmas and corollaries. The conclusion came in the end – using dilation 

we were able to finish the proof of the theorem. Not only this, but the dilation implies that the locus of 

the vertices of the isogonal triangles consists of three circles respectively! That is how we concluded 

that the initially chosen point on the circumcircle was auxiliary, while the point X  was the one which 

determined everything. This is a good example of how sometimes a partial mistake can lead to a truly 

valuable result… 

We managed to prove  a number of additional properties considering some special cases, e.g. when X 

coincides with the center of the circimcircle and then with the center of the incircle. Further on, we 

found special relations involving the first and second Brocard points. 

       

Here we decided to stray aside slightly and to consider the two isodynamic points of the reference 

triangle (the intersection points of the three Apollonius circles for the triangle's vertices).  
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We constructed their isogonal triangles and according to our theorem, they were similar not only to 

each other, but also to the pedal and Cevian triangles for these two points. Thus we obtained two 

families of congruent equilateral triangles. 

The proof was based on dilation again. We noticed that the congruency of all triangles holds true in 

the general case, i.e. can formulate the following: 

Conjecture 3 

All isogonal triangles of two inverse points with respect to ABC's circumcircle, are congruent. 

 

Following the logical generalizations, we came back to constructions involving quadrilaterals. 

Analogously to what we did with the isogonal triangles we decided to consider various configurations. 

We arrived at an interesting result only for the case when the point with respect to which isogonal 

conjugates were taken coincided with the circumcircle of the initial quadrilateral.  

If the quadrilateral were inscribed in a circle family of isogonal quadrilaterals consisted of 

quadrilaterals inscribed in the same circle. Moreover, they were trapezoids. The proof was not 

difficult, despite the unusual result, given the arbitrariness of the original quadrilateral. 

 

   

This project has been funded with support from the European Commission in its Lifelong Learning Programme 
(510028-LLP-1-2010-1-IT-COMENIUS-CMP). This publication reflects the views only of the authors, and the 
Commission cannot be held responsible for any use which may be made of the information contained therein. 
 

Modelling optical lenses with Dynamic Geometry Software 
Andreas Ulovec 

1 Introduction 
In optics when it comes down to show the path of rays of light through glass, lenses or systems of 
lenses, many physics teachers groan – the experiments are quite complex, and you need a lot of 
equipment. It is difficult enough to show a ray of light in air – you need smoke, dust or any other way 
of making light visible. To show the path of light in materials, you need special equipment – smoke 
glass lenses etc. Now that’s not always available, and adjustments to the system can usually only be 
done by removing one piece and putting another piece in. To see what happens if you make a lens 
thicker, you have to take out the current lens and put in the new one. Students can then observe the 
situation before the change and after the change – but it is not exactly a gradual change that lets them 
observe how the path of light actually changes. We want to demonstrate how you can show the path of 
light through a lens with the help of dynamic geometry software (DGS). 

This material can be useful for science teachers, who can use it to model experiments with lenses, 
reflection and refraction – not instead of the actual experiment (if one sees experiments only in 
simulation, the pedagogic value is not quite the same), but complementing it. It can as well be useful 
for mathematics teachers. Well, now where is the mathematics? There is a lot of it in there! If a ray of 
light hits the glass surface of an optical lens, a part of it gets reflected back in a certain angle, and 
another part penetrates the glass and continues there, in another angle. The same happens when the 
light reaches the other surface of the lens – again mathematics is required to calculate the angle in 
which the light is reflected and refracted. For ideal lenses, there is an easy equation calculating these 
effects – but this is just a model, and it does work well only with thin lenses and with light falling in 
near the centre of the lens. With thicker lenses and light being more off-centre, the calculations 
become more complex, and from the equations alone it would be difficult to see what happens. With 
DGS it is possible to simulate the properties of a lens without actually having to use a lens, laser light, 
etc. But even for the DGS, we need mathematics to create the simulation in the first place. 

2 Easy beginnings – light hits a plane surface 
2.1 Reflection 
When a ray of light hits a plane glass surface, a part of it is reflected. The law of reflection says that 
the angle of incidence (between the ray of light and the normal) is equal to the angle of reflection: 

 
Fig.1 Reflection of light at a plane surface. 



In conclusion, this project involved substantial research leading to numerous results relating 

innovative constructions with well known geometric configurations. By no means have we exhausted 

the opportunities for research along these lines. What is important is to simply decide to dream... 
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