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1 Introduction

Nowadays computer generated fractal patterns can be seen everywhere, from squiggly designs on com-
puter art posters to illustrations in serious scientific journals. Interest continues to grow among scientists
and, rather surprisingly, artists and designers. This paper provides visual demonstrations of complicated
and beautiful structures that can arise as solutions of even simple equations.

Fractals are geometric objects which are usually the result of an iterative or recursive construction or
an algorithm, i. e. they are not just static images, but created by a dynamical process. Think about the
beautiful forms that we can see in nature – plants as a result of their dynamic growth; mountains as a
result of past tectonic activity as well as erosion processes... Fractals cannot be described by algebraic
formulae like e. g. some plane figures in the Euclidean geometry.

It is not difficult to imagine that if a system is described by complicated mathematical equations, then
its solution might be complicated and unpredictable. What has come as a surprise to most scientists is
that even simple systems, described by simple equations, can have “strange” solutions. The most famous
example is the equation, used to model a single species time evolution and known as thelogistic map.
More about the solutions of the logistic map can be found in [1].

Here we shall consider systems of two discrete nonlinear equations, known also as recurrence (or differ-
ence) equations or as iterated maps. This kind of systems might arise, for example, from an ecological
predator-prey model. Such two classical Lotka-Volterra models are presented in Section 2 and used to
demonstrate the idea on bounded and stable solutions (called trajectories) of such a system. Examples
of general quadratic, cubic and other nonlinear iterated maps are presented in the next Sections 3, 4 and
5. As it can be seen from the figures there, the solutions totally differ from the ones presented in Section
2; the trajectories (bounded but unstable) describe pieces in the plane that genuinely can be compared to
pieces of art! If you want to learn more about the properties of such kind of solutions of iterated maps,
you can read Section 6. The visualization in the paper is carried out in the computer algebra system
Maple 13. Simple Maple commands producing some of the images are given in the Appendix.

2 Discrete predator-prey models

Consider a two-species predator-prey discrete model in which one species preys on another. Examples in
the nature include sharks and fish, lynx and snow-shoe hares, ladybirds and aphids, wolves and rabbits.
A very simple model, known as the Lotka-Volterra model [2], is the following:

xn+1 = xn(1+ p1− p2xn− p3yn)

yn+1 = yn(1−q1+q2xn), n= 0,1,2, . . .
(1)

Herep1, p2, p3, q1 andq2 are nonnegative constants;xn andyn represent the number of prey and predator
populations respectively at timen. The terms appearing in the right-hand sides of the equations, have a
biological meaning as follows:

• (1+ p1)xn− p2x2
n represents the logistic growth of the population of prey in the absence of predator;

• p3xnyn andq2xnyn represent species interaction: the population of prey suffers and predators gain from
the interaction;

• (1−q1)yn represents the extinction of predators in the absence of preys.
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of making light visible. To show the path of light in materials, you need special equipment – smoke 
glass lenses etc. Now that’s not always available, and adjustments to the system can usually only be 
done by removing one piece and putting another piece in. To see what happens if you make a lens 
thicker, you have to take out the current lens and put in the new one. Students can then observe the 
situation before the change and after the change – but it is not exactly a gradual change that lets them 
observe how the path of light actually changes. We want to demonstrate how you can show the path of 
light through a lens with the help of dynamic geometry software (DGS). 

This material can be useful for science teachers, who can use it to model experiments with lenses, 
reflection and refraction – not instead of the actual experiment (if one sees experiments only in 
simulation, the pedagogic value is not quite the same), but complementing it. It can as well be useful 
for mathematics teachers. Well, now where is the mathematics? There is a lot of it in there! If a ray of 
light hits the glass surface of an optical lens, a part of it gets reflected back in a certain angle, and 
another part penetrates the glass and continues there, in another angle. The same happens when the 
light reaches the other surface of the lens – again mathematics is required to calculate the angle in 
which the light is reflected and refracted. For ideal lenses, there is an easy equation calculating these 
effects – but this is just a model, and it does work well only with thin lenses and with light falling in 
near the centre of the lens. With thicker lenses and light being more off-centre, the calculations 
become more complex, and from the equations alone it would be difficult to see what happens. With 
DGS it is possible to simulate the properties of a lens without actually having to use a lens, laser light, 
etc. But even for the DGS, we need mathematics to create the simulation in the first place. 

2 Easy beginnings – light hits a plane surface 
2.1 Reflection 
When a ray of light hits a plane glass surface, a part of it is reflected. The law of reflection says that 
the angle of incidence (between the ray of light and the normal) is equal to the angle of reflection: 

 
Fig.1 Reflection of light at a plane surface. 



There are three particular types of outcome that are often observed in the real world. In the first case,
there is coexistence, in which the two species live in harmony. In nature, this is the most likely outcome.
In the second case, one of the species becomes extinct, and in the third case both species go to extinction.

Having some values at the initial timen= 0, say(x0,y0), we can consecutively compute by means of (1)
an infinite sequence of points in the(x,y)-plane

(x1,y1), (x2,y2), . . . ,(xn,yn), (xn+1, yn+1), . . . (2)

This sequence describes the evolution of the populations as time increases and is calleda trajectory of
(x0,y0); (x0,y0) is calledinitial point or initial condition. Obviously, the values of the sequence members
depend on the choice of(x0,y0) as well as on the values of the constantsp1, p2, p3, q1 andq2. The main
question is: given some initial point(x0,y0) what can we say about the behavior of the trajectory (2) for
sufficiently largen? Figure 1(a) presents three trajectories within

p1 = 0.05, p2 = 0.0001, p3 = 0.001, q1 = 0.03, q2 = 0.0002 (3)

for three different initial conditions(x0,y0) = (20,5), (x0,y0) = (100,10) and(x0,y0) = (50,40), denoted
by solid boxes. As you can see, whenn increases, the three trajectories approach one point in the plane
and remain close to it. Such a point is called astable steady stateor attractor. You can find it by replacing
in (1) xn+1 = xn = x, yn+1 = yn = y and then solve the obtained nonlinear system forx andy. You will
obtain three different solutions(x,y) = (0,0), (x,y) = (500,0) and(x,y) = (150,35). The third point
(150,35) is the attractor, shown in Figure 1(a). The other two steady states are calledunstable, because
the trajectories of initial points, even slightly different from these steady states, move away from them as
timen increases.

Now setp2 = 0 in the model (1); in this way you change the growth rate law in the prey population. The
system becomes

xn+1 = xn(1+ p1− p3yn)

yn+1 = yn(1−q1+q2xn), n= 0,1,2, . . .
(4)

Figure 1(b) presents one trajectory with the same coefficient values forp1, p3, q1 andq2 from (3) and with
initial condition(x0,y0) = (20,5), denoted by a solid box. Now we see a totally different picture: the two
populations oscillate, building astable cycle. How can the system (4) be interpreted in terms of species
behavior? If the ratio of predators to prey is relatively high, then the population of predators drops. When
the ratio of predators to prey drops, then the population of prey increases. If there is sufficient quantity
of prey, the predator number starts to increase. The resulting cyclic behavior is repeated over and over.

Figure 1: Trajectories:(a) of model (1);(b) of model (4)
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The trajectories in the above two examples have a common feature: they all arebounded, because there
exist quadrangles in the(x,y)-plane (see Figure 1) which enclose all points(xn,yn), n= 1,2, . . . for any
initial condition(x0,y0) inside these quadrangles. In the two systems there is either a stable steady state,
that attracts all trajectories, or the trajectory builds a stable cycle. In both cases we say that the trajectories
are stable.

The equations in (1) and (4) are calleddiscrete iterated systemsor iterated mapsbecause the next values
of the x- andy-quantities are predicted by the previous values. In the next sections we shall consider
more general examples of iterated maps, whose trajectories are bounded butunstable: such a trajectory
will never move off to infinity, but will also never settle down to a point or a cycle. Initial conditions are
drown to a special type of attractors, called astrangeor chaoticattractor, which is not a point or even a
finite set of points but rather a complicated geometrical object, calledfractal.

3 Iterated quadratic maps

The iterated maps (1) and (4) have terms of the formx2
n andxnyn as their highest order term, thus they

are maps of order 2 or quadratic maps. The general form of a quadratic map is

xn+1 = a1+a2xn+a3x2
n+a4xnyn+a5yn+a6y2

n

yn+1 = b1+b2xn+b3x2
n+b4xnyn+b5yn+b6y2

n, n= 0,1,2, . . .
(5)

For example, we have in the map (1)

a1 = 0, a2 = 1+ p1, a3 =−p2, a4 =−p3, a5 = a6 = 0; b1 = b2 = b3 = 0, b4 = q2, b5 = 1−q1, b6 = 0.

Denote bya= (a1,a2,a3,a4,a5,a6) and byb= (b1,b2,b3,b4,b5,b6) the vectors of the coefficients in the
quadratic iteration scheme (5). Table 1 contains six numerical examples fora andb [4]. The initial point
in all examples is chosen to be(x0,y0) = (0,0).

Table 1: Examples of quadratic maps with chaotic attractors

Example Coefficient vectorsa and b Figure
1 a= (−1.2, −0.6, −0.5, 0.1, −0.7, 0.2) 2 (left)

b= (−0.9, 0.9, 0.1, −0.3, −1, 0.3)
2 a= (−1.1, −1, 0.4, −1.2, −0.7, 0) 2 (right)

b= (−0.7, 0.9, 0.3, 1.1, −0.2, 0.4)
3 a= (−0.9, 0.6, 1.2, 0.8, −0.8, −1) 3 (left)

b= (−0.4, 0.1, −0.6, 0.4, 0.1, 0.9)
4 a= (−0.3, 0.7, 0.7, 0.6, 0, −1.1) 3 (right)

b= (0.2, −0.6, −0.1, −0.1, 0.4, −0.7)
5 a= (0.2, 0.8, −0.6, −0.7, −0.3, −0.2) 4 (left)

b= (−0.9, −0.5, 0.6, −1.2, −0.3, 0.8)
6 a= (0.7, 0.6, −0.4, −0.1, 0.8, 0.1) 4 (right)

b= (−0.9, 0.4, 0.6, −0.4, −0.7, −1.2)

Now enjoy the fascinating shapes of the chaotic attractors ofthese maps in Figures 2 to 4.

The computations and graphic visualizations are carried out in the computer algebra systemMaple 13.
TheMaplecommands producing the left image on Figure 2 are given in the Appendix. Note the value
of the constantiterations , which is equal to 35000! This value corresponds to the numbern of the
points in (2), which are used to produce the image. Some of the examples in Table 1 require even more
iterations – about 50000! Can you imagine that you would be able to reproduce the picture by hand-
made calculations?... The solution images could not be seen in their full glory without computers and
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computer technologies and this is one of the greatest gifts ofthe 21-st century. It is not in vain that some
fractals were regarded as exceptional objects, as counter examples, as “mathematical monsters” during
19-th century.

Figure 2: Chaotic attractors of quadratic maps: Examples 1 and 2

Figure 3: Chaotic attractors of quadratic maps: Examples 3 and 4

Task 1. Visualize the chaotic attractors of the well known Hénon map [2], proposed by the French
astronomer Michel Hénon in 1976:

xn+1 = 1+cx2
n+yn

yn+1 = dxn, n= 0,1,2, . . .

with initial condition(x0,y0) = (0,0) and coefficients:(i) c=−1.2, d = 0.4; (ii) c=−1.4, d = 0.3.

Task 2. Visualize the chaotic attractors of the following quadratic maps, starting with initial condition
(x0,y0) = (0,0) and coefficient vectors

(i) a = (0.8, −0.8, −1.1, −0.3, −0.1, −1), b = (−0.9, −0.4, 0.6, −0.4, −0.4, 0.4);

(ii) a = (1.3, 0.3, 0, 0.6, −0.6, −1), b = (0.1, −0.7, 0.5, −0.8, 0.1, −0.6).
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Figure 4: Chaotic attractors of quadratic maps: Examples 5 and 6

4 Iterated cubic maps

If we introduce in the quadratic map (5) terms of order 3 likex3
n, x2

nyn, xny2
n, y3

n, we obtain a cubic map.
The general form of the cubic map is

xn+1 = a1+a2xn+a3x2
n+a4x3

n+a5x2
nyn+a6xnyn+a7xny2

n+a8yn+a9y2
n+a10y3

n

yn+1 = b1+b2xn+b3x2
n+b4x3

n+b5x2
nyn+b6xnyn+b7xny2

n+b8yn+b9y2
n+b10y3

n

n= 0,1,2, . . .

(6)

Denote bya= (a1,a2,a3,a4,a5,a6,a7,a8,a9,a10) and byb= (b1,b2,b3,b4,b5,b6,b7,b8,b9,b10) the vec-
tors of coefficients in (6). Table 2 contains four numerical examples [4] of cubic maps with chaotic
attractors. The images of the chaotic attractors are shown in Figures 5 and 6. Would you imagine that so
simple equations can produce so beautiful solutions?

Table 2: Examples of cubic maps with chaotic attractors

Example Coefficient vectorsa and b Figure
7 a= (−0.1, −0.6, 0.5, 0.2, −0.2, −0.3, −0.7, −0.8, −0.1, −0.9) 5 (left)

b= (−0.6, −0.2, 1.1, 0.6, 0.8, −0.8, −0.8, 1, 1.2, −0.8)
8 a= (−0.4, 0.6, 0, −0.5, 0.4, −1, −0.5, 0.3, −0.9, −0.7) 5 (right)

b= (−0.2, −0.7, −1.1, −0.2, −0.8, −1.2, −0.1, −0.4, −0.7, −0.9)
9 a= (0, −0.6, −0.6, 0.1, −0.9, 0.3, −0.5, 1, 0.2, 0.1) 6 (left)

b= (−0.2, −0.7, 0.4, 0.8, −0.4, −0.4, −0.5, −1.1, 0.9, 0.3)
10 a= (0.2, 0.9, −0.7, −0.2, 1, −0.2, −0.8, −0.4, −1.1, 0.3) 6 (right)

b= (−0.6, 0.1, 1.2, 0.3, 0.9, −0.2, 1, −1, 1.2, 0.8)

TheMaplecommands producing the image on Figure 5 (left) are given in the Appendix. In Examples 7
to 10, the initial conditions are chosen to be(x0,y0) = (0,0).

It is interesting to note, that for most of the strange attractors the initial point does not matter, i. e. all
initial conditions (x0,y0) result in the same image (check it!). In other words, any initial point will
generate the same set of points, although they will be generated in a different order.

Task 3. Develop the image of the chaotic attractor for a cubic map with coefficient vectors

a = (−0.3, 1.2, −1, −1.1, 0, 0.1, −0.7, 0.1, 1.2, 0.2)

b = (−0.8, 0.3, 1.2, 0.8, −0.6, −0.5, −0.5, −0.8, 0.6, 0.8).
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Figure 5: Chaotic attractors of cubic maps: Examples 7 and 8

Figure 6: Chaotic attractors of cubic maps: Examples 9 and 10

Task 4. Write down the general form of a quartic iterated map, i. e. a map with the highest order term
being 4. Modify theMaplecommands to visualize the chaotic attractor of the quartic map with coefficient
vectors

a = (−0.4, −0.9, −0.4, −0.9, 0.6, −1.1, 0.7, 0.3, 0.1, −0.9, −1.1, 0.6, −0.6, 0.2, −0.2)

b = (0.2, −0.2, −0.6, −1.2, −0.2, 0, −1, −1, −0.9, 0.1, 1.1, −0.7, −0.5, 1, 0.4).

5 Other fascinating iterated maps

In the previous two sections we considered polynomial iterated maps, i. e. the right-hand sides of (5) and
(6) were polynomials of two variables of second and third degree respectively. Instead of polynomials we
can consider iterated maps, involving other nonlinear functions such as trigonometric functions, absolute
value, square root, signum function etc. – all functions that are usually supported by any software
environment. Below we present two such examples.

The King’s Dream. It is a simple, yet beautiful fractal [7]. The equations to produce it are:

xn+1 = sin(byn)+c sin(bxn)

yn+1 = sin(axn)+d sin(ayn), n= 0,1,2, . . .
(7)
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near the centre of the lens. With thicker lenses and light being more off-centre, the calculations 
become more complex, and from the equations alone it would be difficult to see what happens. With 
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Fig.1 Reflection of light at a plane surface. 



with initial condition (x0,y0) = (0.1, 0.1) anda = −0.966918, b = 2.879879, c = 0.765145, d =
0.7447228. The fractal is shown in Figure 7 (left).

If we slightly change the values ofb, c andd, takingb := b+0.1, c := c+0.01, d := d−0.2, then we
obtain a new fractal, presented in Figure 7 (right).

Figure 7: The King’s Dream (left) and its modification (right)

Task 5. Construct another fractal using (7) with coefficient valuesa = −0.967, b = 2.89, c = 0.769,
d = 0.785 and initial condition(x0,y0) = (0.1, 0.1).

Barry Martin fractal. It is produced by the following discrete iterated system

xn+1 = yn−sign(xn)
√

|bxn−c|

yn+1 = a−xn, n= 0,1,2, . . . ; x0 = y0 = 0.1

Three special functions are used in the first equation: the square root, the absolute value function, and
the signum functionsign. Thesignfunction returns a value of 1 if thexn-value is positive, and a value of
−1 if the xn-value is negative. The constantsa, b andc may take any values. The fractals, presented in
Figure 8 are computed fora= 1, b= 2, c= 3 (left plot) and fora= 0.4, b= 1, c= 0.1 (right plot).

Figure 8: Barry Martin strange attractors

Task 6. Construct other Barry Martin fractals with initial conditionsx0 = y0 = 0.1 and coefficient values
(i) a= 1, b=−1, c= 2;
(ii) a= 1, b=−1, c=−1;
(iii ) a= 0.2, b=−0.1, c= 0.2.
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6 If you want to learn more...

Classical fractals such as the Koch curve, the Sierpinski triangle or hexagon (see [3], [5], [6], [8] for
details) are objects that display self-similarity under magnification and can be constructed using a simple
motif (an image repeated on ever-reduced scales). Many objects in nature display this self-similarity at
different scales; for example, cauliflowers, ferns, trees, and even blood vessel networks in our own bodies
have some fractal structure. Fractals appeared also in art, for example in the paintings of the Dutch artist
Maurits C. Escher[9], before they were widely appreciated by mathematicians and scientists. Fractals
are being applied in many branches of science, for example in computer graphics and image compression
(take a closer look at the images on the Web).

The fractals shown on the figures in the previous sections do not display exactly self-similarity; they have
only regions that are self-similar. Are there such objects in the real world?

The main ingredient in the definition of a fractal is itsdimension. Isolated points have dimension zero,
line segments have dimension one, surfaces have dimension two, and solids have dimension three. This
is their “usual” or so calledtopological dimension. A fractal has a dimension that exceeds its topological
dimension. In most cases, fractals possess non-integer dimension, calledfractal dimensions. The fractal
dimension gives finer information about the roughness or complexity of the set. There are however
fractals with integer dimension; in this case the fractal dimension must exceed the topological dimension.
For example the Sierpinski tetrahedron (a tetrahedral analogue of the triangle) has fractal dimension two,
but topological dimension one [3].

The uniqueness of the strange attractors is due to the fact that one does not know exactly where on the
attractor the system’s trajectory will be. Two points on the attractor that are near each other at one time
will be arbitrarily far apart at later times. The only restriction is that the state of the system remains on
the attractor. Moreover, the motion of the system never repeats – there are no cycles. The motion on
these strange attractors is what is calledchaotic behavior of the system.

Imagine a set of initial points filling a small square region in the(x,y)-plane. After one iteration the
points will move to new positions in the plane, occupying for example an “elongated” region like a
parallelogram. The square has contracted in one direction and expanded in the other. With each iteration
the parallelogram gets longer and narrower. The orientation of the parallelogram also changes with each
iteration. The quantitative interpretation of these effects are given by the so calledLyapunov exponents.
The name comes from the late 19th-century Russian mathematician Aleksandr M. Lyapunov. An iterated
map described by two equations, like the quadratic or cubic maps, possesses two Lyapunov exponents
– a positive one corresponding to the direction of expansion, and a negative one corresponding to the
direction of contraction. Typical for chaos is that at least one of the Lyapunov exponents should be
positive. The method for computing the Lyapunov exponents is slightly complicated and will not be
discussed here. TheMaplecommands for computing the Lyapunov exponents in Examples 1 and 7 are
given in the Appendix. Table 3 contains the Lyapunov exponentsL1 andL2 of the quadratic and the cubic
maps from Examples 1 to 10.

There is a close relation between the fractal dimension and the Lyapunov exponents. Assume thatL1,
L2 are known andL1 > 0, L2 < 0; as a rule they should satisfy the relation|L1| < |L2|. Then the fractal
dimensionFD can be computed via the formula

FD = 1−
L1

L2
. (8)

The valueFD is called Lyapunov dimension and also Kaplan-Yorke dimension after the names of the
mathematicians who proposed the rule (8). The interested reader can consult the books [2], [3] and [4]
for more details on this topic. The fractal dimensions of the chaotic attractors from Examples 1 to 10 are
given in Table 3, columnFD.

Let us finish this article by Barnsley’s words [10]:“Fractal geometry will make you see everything
differently... You risk the loss of your childhood vision of clouds, forests, galaxes, leaves, feathers, rocks,
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Table 3: Lyapunov exponentsL1, L2 and fractal dimensionsFD of the maps in Tables 1 and 2

Example L1 L2 FD Figure
1 0.18 −0.45 1.4 2 (left)
2 0.093 −0.099 1.94 2 (right)
3 0.029 −0.032 1.91 3 (left)
4 0.16 −0.32 1.5 3 (right)
5 0.18 −0.37 1.48 4 (left)
6 0.13 −0.24 1.54 4 (right)
7 0.11 −0.19 1.58 5 (left)
8 0.095 −0.16 1.59 5 (right)
9 0.049 −0.11 1.45 6 (left)
10 0.043 −0.058 1.74 6 (right)

mountains, torrents of water, carpets, bricks, and much elsebesides. Never again will your interpretation
of these things be quite the same.”

Appendix: Maple commands

The Appendix containsMaplecommands for computing and visualizing the chaotic attractor as well as
its Lyapunov exponents and fractal dimension for Example 1 from Table 1 and Example 7 from Table
2. The interested reader can produce the images of the other examples by simply replacing the vector
components ofa andb with the corresponding numerical values from the tables.

TheMapleprocedures are kept as simple as possible. The more experienced programmer can translate
them in her/his favorite programming environment.

• Computing and visualizing the chaotic attractor of the quadratic map in Example 1

> restart:
> with(plots):
> iterations:=35000:
> a:=array(1..6,[-1.2, -0.6, -0.5, 0.1, -0.7, 0.2]);

b:=array(1..6,[-0.9, 0.9, 0.1, -0.3, -1, 0.3]);
> x:=array(0..iterations):

y:=array(0..iterations):
> x[0]:=0: y[0]:=0: #initial condition
> for i from 0 to iterations-1 do

x[i+1]:=a[1]+a[2] * x[i]+a[3] * (x[i])ˆ2+a[4] * x[i] * y[i]
+a[5] * y[i]+a[6] * (y[i])ˆ2:

y[i+1]:=b[1]+b[2] * x[i]+b[3] * (x[i])ˆ2+b[4] * x[i] * y[i]
+b[5] * y[i]+b[6] * (y[i])ˆ2

end do:
> points:=[[x[n],y[n]]$n=1..iterations]:
> pointplot(points,style=point,symbol=solidcircle,symbolsize=4,

color=blue,axes=boxed,labels=[’x’,’y’]);

• Computing the Lyapunov exponents and the fractal dimension of the quadratic map in Example 1

> itermax:=500:
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Fig.1 Reflection of light at a plane surface. 



> a:=array(1..6,[-1.2, -0.6, -0.5, 0.1, -0.7, 0.2]);
b:=array(1..6,[-0.9, 0.9, 0.1, -0.3, -1, 0.3]);

> x:=0: y:=0:
> vector1:=<1,0>: vector2:=<0,1>:
> for i from 1 to itermax do

x1:=a[1]+a[2] * x+a[3] * xˆ2+a[4] * x* y+a[5] * y+a[6] * yˆ2:
y1:=b[1]+b[2] * x+b[3] * xˆ2+b[4] * x* y+b[5] * y+b[6] * yˆ2:
x:=x1:
y:=y1:
J:=Matrix([[a[2]+2 * a[3] * x+a[4] * y,a[4] * x+a[5]+2 * a[6] * y],

[b[2]+2 * b[3] * x+b[4] * y,b[4] * x+b[5]+2 * b[6] * y]]):
vector1:=J.vector1:
vector2:=J.vector2:
dotprod1:=vector1.vector1:
dotprod2:=vector1.vector2:
vector2:=vector2 - (dotprod2/dotprod1) * vector1:
length_vector1:=sqrt(dotprod1):
area:=abs(vector1[1] * vector2[2] - vector1[2] * vector2[1]):
L1:=evalf(log(length_vector1)/i):
L2:=evalf(log(area)/i-L1)

end do:
> print(’L1’=L1, ’L2’=L2); #Lyapunov exponents, L2<0<L1, |L1|<|L2|
> FD:=1 - L1/L2; #the fractal dimension

• Computing and visualizing the chaotic attractor of the cubic map in Example 7

> restart:
> with(plots):
> iterations:=35000:
> a:=array(1..10,[-0.1,-0.6,0.5,0.2,-0.2,-0.3,-0.7,-0.8,-0.1,-0.9]);

b:=array(1..10,[-0.6,-0.2,1.1,0.6,0.8,-0.8,-0.8,1,1.2,-0.8]);
> x:=array(0..iterations): y:=array(0..iterations):
> x[0]:=0: y[0]:=0: #initial conditions
> for i from 0 to iterations-1 do

x[i+1]:=a[1]+a[2] * x[i]+a[3] * (x[i])ˆ2+a[4] * (x[i])ˆ3
+a[5] * (x[i])ˆ2 * y[i]+a[6] * x[i] * y[i]+a[7] * x[i] * (y[i])ˆ2
+a[8] * y[i]+a[9] * (y[i])ˆ2 + a[10] * (y[i])ˆ3:

y[i+1]:=b[1]+b[2] * x[i]+b[3] * (x[i])ˆ2+b[4] * (x[i])ˆ3
+b[5] * (x[i])ˆ2 * y[i]+b[6] * x[i] * y[i]+b[7] * x[i] * (y[i])ˆ2
+b[8] * y[i]+b[9] * (y[i])ˆ2 + b[10] * (y[i])ˆ3:

end do:
> points:=[[x[n],y[n]]$n=1..iterations]:
> pointplot(points,style=point,symbol=solidcircle,symbolsize=4,

color="LightSeaGreen",axes=boxed,labels=[’x’,’y’]);

• The Lyapunov exponents and the fractal dimension of the cubic map in Example 7

> Digits:=30:
> x:=’x’: y:=’y’:
> itermax:=500:
> a:=array(1..10,[-0.1,-0.6,0.5,0.2,-0.2,-0.3,-0.7,-0.8,-0.1,-0.9]);

b:=array(1..10,[-0.6,-0.2,1.1,0.6,0.8,-0.8,-0.8,1,1.2,-0.8]);
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Fig.1 Reflection of light at a plane surface. 



> x:=0: y:=0:
> vector1:=<1,0>: vector2:=<0,1>:
> for i from 1 to itermax do

x1:=a[1]+a[2] * x+a[3] * xˆ2+a[4] * xˆ3+a[5] * xˆ2 * y
+a[6] * x* y+a[7] * x* yˆ2+a[8] * y+a[9] * yˆ2 + a[10] * yˆ3:

y1:=b[1]+b[2] * x+b[3] * xˆ2+b[4] * xˆ3+b[5] * xˆ2 * y
+b[6] * x* y+b[7] * x* yˆ2+b[8] * y+b[9] * yˆ2 + b[10] * yˆ3:

x:=x1: y:=y1:
J:=Matrix([[a[2]+2 * a[3] * x+3 * a[4] * xˆ2+2 * a[5] * x* y+a[6] * y+a[7] * yˆ2,

a[5] * xˆ2+a[6] * x+2 * a[7] * x* y+a[8]+2 * a[9] * y+3 * a[10] * yˆ2],
[b[2]+2 * b[3] * x+3 * b[4] * xˆ2+2 * b[5] * x* y+b[6] * y+b[7] * yˆ2,
b[5] * xˆ2+b[6] * x+2 * b[7] * x* y+b[8]+2 * b[9] * y+3 * b[10] * yˆ2]]):

vector1:=J.vector1:
vector2:=J.vector2:
dotprod1:=vector1.vector1:
dotprod2:=vector1.vector2:
vector2:=vector2 - (dotprod2/dotprod1) * vector1:
length_vector1:=sqrt(dotprod1):
area:=abs(vector1[1] * vector2[2] - vector1[2] * vector2[1]):
L1:=evalf(log(length_vector1)/i):
L2:=evalf(log(area)/i-L1)

end do:
> print(’L1’=L1, ’L2’=L2); #Lyapunov exponents, L2<0<L1, |L1|<|L2|
> FD:=1 - L1/L2; #the fractal dimension
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Modelling optical lenses with Dynamic Geometry Software 
Andreas Ulovec 

1 Introduction 
In optics when it comes down to show the path of rays of light through glass, lenses or systems of 
lenses, many physics teachers groan – the experiments are quite complex, and you need a lot of 
equipment. It is difficult enough to show a ray of light in air – you need smoke, dust or any other way 
of making light visible. To show the path of light in materials, you need special equipment – smoke 
glass lenses etc. Now that’s not always available, and adjustments to the system can usually only be 
done by removing one piece and putting another piece in. To see what happens if you make a lens 
thicker, you have to take out the current lens and put in the new one. Students can then observe the 
situation before the change and after the change – but it is not exactly a gradual change that lets them 
observe how the path of light actually changes. We want to demonstrate how you can show the path of 
light through a lens with the help of dynamic geometry software (DGS). 

This material can be useful for science teachers, who can use it to model experiments with lenses, 
reflection and refraction – not instead of the actual experiment (if one sees experiments only in 
simulation, the pedagogic value is not quite the same), but complementing it. It can as well be useful 
for mathematics teachers. Well, now where is the mathematics? There is a lot of it in there! If a ray of 
light hits the glass surface of an optical lens, a part of it gets reflected back in a certain angle, and 
another part penetrates the glass and continues there, in another angle. The same happens when the 
light reaches the other surface of the lens – again mathematics is required to calculate the angle in 
which the light is reflected and refracted. For ideal lenses, there is an easy equation calculating these 
effects – but this is just a model, and it does work well only with thin lenses and with light falling in 
near the centre of the lens. With thicker lenses and light being more off-centre, the calculations 
become more complex, and from the equations alone it would be difficult to see what happens. With 
DGS it is possible to simulate the properties of a lens without actually having to use a lens, laser light, 
etc. But even for the DGS, we need mathematics to create the simulation in the first place. 

2 Easy beginnings – light hits a plane surface 
2.1 Reflection 
When a ray of light hits a plane glass surface, a part of it is reflected. The law of reflection says that 
the angle of incidence (between the ray of light and the normal) is equal to the angle of reflection: 

 
Fig.1 Reflection of light at a plane surface. 


